Diffusion and Ionic Conduction in Nanocrystalline Ceramics

We review case studies of diffusion in nanocrystalline ceramics, i.e. polycrystalline non-metallic materials with average grain sizes typically in the range from 5 to 50 nm. The experimental methods applied are, on the one hand, tracer diffusion or conductivity methods which are sensitive to macroscopic transport, and, on the other hand, NMR techniques which, complementarily to the previous ones, give access to microscopic diffusion parameters like atomic hopping rates and jump barrier heights. In all cases the diffusion properties of the samples, whether single-phase systems or composites, are dominated by their grain boundaries and interfacial regions, respectively. In principle, all experimental techniques allow one to discriminate between contributions to the diffusion from the crystalline grains and those from the interfacial regions. Corresponding examples are presented for SIMS and impedance measurements on oxygen conductors. NMR studies for various nanocrystalline lithium ion conductors reveal that two lithium species with different diffusivities are present. Comparison with the coarse grained counterparts shows that the slower ions are located inside the crystallites and the faster ones in the structurally disordered interfacial regions. Investigations on composite materials exhibit phenomena which can be explained by the percolation of fast diffusion pathways being formed by the interfaces between the two components.

[1]  P. Heitjans,et al.  Heterogeneous lithium diffusion in nanocrystalline Li2O:Al2O3 composites , 2003 .

[2]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[3]  M. Winterer Nanocrystalline Ceramics: Synthesis and Structure , 2002 .

[4]  P. Heitjans,et al.  Heterogeneous 7Li NMR relaxation in nanocrystalline Li2O:B2O3 composites , 2002 .

[5]  P. Heitjans,et al.  Diffusion in amorphous LiNbO3 studied by 7Li NMR — comparison with the nano- and microcrystalline material , 2002 .

[6]  C. Herzig,et al.  59Fe Grain boundary diffusion in nanostructured γ-Fe–Ni , 2002 .

[7]  C. Herzig,et al.  59Fe Grain boundary diffusion in nanostructured γ-Fe–Ni , 2002 .

[8]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[9]  P. Heitjans,et al.  Intergranular structure of nanocrystalline layered LixTiS2 as derived from 7Li NMR spectroscopy , 2001 .

[10]  J. Íñiguez,et al.  Anomalous properties in ferroelectrics induced by atomic ordering , 2001, Nature.

[11]  P. Heitjans,et al.  NMR Investigations on Ion Dynamics and Structure in Nanocrystalline and Polycrystalline LiNbO3 , 2001 .

[12]  R. Brusa,et al.  Deuterium effusion from nanocrystalline boron nitride thin films , 2001 .

[13]  L. Gauckler,et al.  Sintering of Nanocrystalline CeO2 Ceramics , 2001 .

[14]  P. Heitjans,et al.  Li+ Diffusion and its Structural Basis in the Nanocrystalline and Amorphous Forms of Two-dimensionally Ion-conducting LixTiS2 , 2001 .

[15]  T. Tsuzuki,et al.  SnO2 nanoparticles prepared by mechanochemical processing , 2001 .

[16]  P. Heitjans,et al.  Li Diffusion in Nano- and Microcrystalline (1-x)Li2O:xB2O3 , 2001 .

[17]  O. Oreshina,et al.  Triple Junction Diffusion: Experiments and Models , 2001 .

[18]  Andreas Tschöpe,et al.  Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model , 2001 .

[19]  R. Birringer,et al.  Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments , 2001 .

[20]  R. Borzi,et al.  Microstructural and magnetic characterization of nanostructured α-Fe2O3 and CuO mixtures obtained by ball milling , 2001 .

[21]  A. Miotello,et al.  Structural evolution of Fe-Al multilayer thin films for different annealing temperatures , 2001 .

[22]  A. Benker,et al.  Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials , 2001 .

[23]  Shiyan Li,et al.  Magnetotransport and the Shubnikov-de Haas effect in quasi-two-dimensional purple bronze TlMo6O17 , 2001 .

[24]  K. Eberl,et al.  Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.

[25]  Philippe Knauth,et al.  Solute segregation, electrical properties and defect thermodynamics of nanocrystalline TiO2 and CeO2 , 2000 .

[26]  Philippe Guyot-Sionnest,et al.  n-type colloidal semiconductor nanocrystals , 2000, Nature.

[27]  P. Knauth Ionic Conductor Composites: Theory and Materials , 2000 .

[28]  H. Kliem,et al.  Detection of Space Charge Limited Currents in Nanoscaled Titania , 2000 .

[29]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[30]  A. Chadwick,et al.  An EXAFS study of nanocrystalline yttrium stabilized cubic zirconia films and pure zirconia powders , 2000 .

[31]  Philippe M. Fauchet,et al.  Ordering and self-organization in nanocrystalline silicon , 2000, Nature.

[32]  Arnaud Fernandez,et al.  TEM study of fractal scaling in nanoparticle agglomerates obtained by gas-phase condensation , 2000 .

[33]  J. Dahn,et al.  Reaction of Li with Grain‐Boundary Atoms in Nanostructured Compounds , 2000 .

[34]  R. Hempelmann,et al.  μSR-Experiments on proton-conducting oxides , 2000 .

[35]  P. Heitjans,et al.  Nanocrystalline Oxide Ceramics Prepared by High-Energy Ball Milling , 2000 .

[36]  Alfredo Caro,et al.  Grain-boundary structures in polycrystalline metals at the nanoscale , 2000 .

[37]  R. Birringer,et al.  Elastic properties of single-crystalline and consolidated nano-structured yttrium oxide at room temperature , 2000 .

[38]  J. Maier Point Defect Thermodynamics: Macro- vs. Nanocrystals , 2000 .

[39]  P. Heitjans,et al.  Local and overall ionic conductivity in nanocrystalline CaF2 , 2000 .

[40]  Juergen Fleig The influence of non-ideal microstructures on the analysis of grain boundary impedances , 2000 .

[41]  Harry L. Tuller,et al.  Ionic conduction in nanocrystalline materials , 2000 .

[42]  J. Maier Point-defect thermodynamics and size effects , 2000 .

[43]  P. Heitjans,et al.  Mechanochemical Preparation and Characterization of Nanocrystalline Ceramic Composites , 2000 .

[44]  H. Fuess,,et al.  Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2 , 2000, Ultramicroscopy.

[45]  P. Heitjans,et al.  Nanocrystalline versus microcrystalline Li(2)O:B(2)O3 composites: anomalous ionic conductivities and percolation theory , 2000, Physical review letters.

[46]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[47]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[48]  Y. Waseda,et al.  Nanocrystalline MgAl2O4: Measurement of Thermodynamic Properties Using a Solid State Cell , 2000 .

[49]  C. K. Kim,et al.  Calculation of the contribution to grain boundary diffusion in ionic systems that arises from enhanced defect concentrations adjacent to the boundary , 2000 .

[50]  John Abrahamson,et al.  Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil , 2000, Nature.

[51]  Jackie Y. Ying,et al.  Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion , 2000, Nature.

[52]  Porto,et al.  Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles , 2000, Physical review letters.

[53]  R. Würschum Diffusion in nanocrystalline metals and alloys , 1999 .

[54]  S. Phillpot,et al.  Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation , 1999 .

[55]  J. Jamnik,et al.  In Situ Monitoring and Quantitative Analysis of Oxygen Diffusion Through Schottky‐Barriers in SrTiO3 Bicrystals , 1999 .

[56]  C. Nan,et al.  Grain size-dependent electrical properties of nanocrystalline ZnO , 1999 .

[57]  H. Schaefer,et al.  OXYGEN DIFFUSION IN ULTRAFINE GRAINED MONOCLINIC ZRO2 , 1999 .

[58]  C. Demetry,et al.  Grain size-dependent electrical properties of rutile (TiO2) , 1999 .

[59]  W. Jaegermann,et al.  Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia , 1999 .

[60]  Liang-ying Zhang,et al.  An Effective Synthetic Route for a Novel Electrolyte: Nanocrystalline Solid Solutions of (CeO2)1–x(BiO1.5)x , 1999 .

[61]  H. Tuller,et al.  Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide , 1999 .

[62]  G. Hadjipanayis,et al.  MAGNETIZATION TEMPERATURE DEPENDENCE IN IRON NANOPARTICLES , 1998 .

[63]  P. Heitjans,et al.  NMR Relaxation Study of Ion Dynamics in Nanocrystalline and Polycrystalline LiNbO3 , 1998 .

[64]  J. Weissmüller,et al.  SEGREGATION-INDUCED INSTABILITY OF NANOCRYSTALLINE LINE COMPOUNDS , 1998 .

[65]  P. Knauth,et al.  Enhanced electrical conductivity of CuBr-TiO2 composites: Dependence on temperature, volume fractions and grain sizes , 1998 .

[66]  R. Andrievski State-of-the-Art and Perspectives in Pariculate Nanostructured Materials , 1998 .

[67]  R. Birringer,et al.  Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis , 1998 .

[68]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[69]  H. Mamiya,et al.  Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems , 1998 .

[70]  Jackie Y. Ying,et al.  Research Needs Assessment on Nanostructured Catalysts , 1997 .

[71]  H. Tuller Solid State Electrochemical Systems–Opportunities for Nanofabricated or Nanostructured Materials , 1997 .

[72]  R. Hempelmann,et al.  Nanocrystalline materials: Nanocrystalline metals and oxides I: Pulsed electrodeposition , 1997 .

[73]  C. Nan,et al.  Anomalous Space‐Charge Limited Currents in Nanocrystalline ZnO , 1997 .

[74]  R. Hempelmann,et al.  Nanocrystalline metals and oxides II: Reverse microemulsions , 1997 .

[75]  P. Knauth,et al.  Enhanced conductivity in ionic conductor-insulator composites: Experiments and numerical model , 1997 .

[76]  C. Nan,et al.  Infrared Reflectance and an Evidence for Low Carrier Density of Nanocrystalline ZnO , 1997 .

[77]  P. Heitjans,et al.  Nuclear magnetic and conductivity relaxations by Li diffusion in glassy and crystalline LiAlSi4O10 , 1997 .

[78]  R. N. Viswanath,et al.  Preparation and ferroelectric phase transition studies of nanocrystalline BaTiO3 , 1997 .

[79]  A. Chadwick,et al.  The Preparation of Nanocrystalline Oxides and Their Characterisation using Synchrotron Techniques , 1997 .

[80]  Hermann Schmalzried,et al.  Chemical Kinetics of Solids , 1997 .

[81]  Harlan U. Anderson,et al.  The transport properties of nanocrystalline SrCe0.95Yb0.05O3 thin films , 1996 .

[82]  W. Steckelmacher Encyclopedia of applied physics , 1996 .

[83]  R. Würschum,et al.  Correlation between the kinetics of the amorphous‐to‐nanocrystalline transformation and the diffusion in alloys , 1996 .

[84]  Jackie Y. Ying,et al.  Defect and transport properties of nanocrystalline CeO2-x , 1996 .

[85]  A. Bunde,et al.  A unified site relaxation model for ion mobility in glassy materials , 1996 .

[86]  Y. Chiang,et al.  Solute Segregation and Grain‐Boundary Impedance in High‐Purity Stabilized Zirconia , 1996 .

[87]  P. Nordblad,et al.  Aging in a magnetic particle system. , 1995, Physical review letters.

[88]  Sanders,et al.  Are nanophase grain boundaries anomalous? , 1995, Physical review letters.

[89]  S. Phillpot,et al.  A structural model for grain boundaries in nanocrystalline materials , 1995 .

[90]  Richard W. Siegel,et al.  Impedance spectroscopy of grain boundaries in nanophase ZnO , 1995 .

[91]  Löffler,et al.  Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution functions. , 1995, Physical review. B, Condensed matter.

[92]  C. Chateau,et al.  Ionic conductivity of yttrium-doped zirconia and the “composite effect” , 1995 .

[93]  D. Wolf,et al.  Molecular‐dynamics study of the synthesis and characterization of a fully dense, three‐dimensional nanocrystalline material , 1995 .

[94]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[95]  Chen,et al.  Enhanced magnetization of nanoscale colloidal cobalt particles. , 1995, Physical review. B, Condensed matter.

[96]  G. L. Trigg,et al.  Encyclopedia of Applied Physics , 1994 .

[97]  P. Heitjans,et al.  7Li NMR relaxation by diffusion in hexagonal and cubic LixTiS2 , 1994 .

[98]  S. Rajendran,et al.  Effect of micro- and nano-structures on the properties of ionic conductors , 1994 .

[99]  P. Schwander,et al.  Effect of intergranular glass films on the electrical conductivity of 3Y-TZP , 1994 .

[100]  Meyer,et al.  Spin-lattice relaxation: Non-Bloembergen-Purcell-Pound behavior by structural disorder and Coulomb interactions. , 1993, Physical review letters.

[101]  P. Heitjans,et al.  7Li‐NMR Study of Diffusion‐Induced Spin‐Lattice Relaxation in Glassy and Crystalline LiAlSi2O6 , 1992 .

[102]  W. Johnson,et al.  Reversible grain size changes in ball-milled nanocrystalline Fe–Cu alloys , 1992 .

[103]  H. Gleiter Diffusion in Nanostructured Metals , 1992 .

[104]  Alan V. Chadwick,et al.  Electrical conductivity measurements of ionic solids , 1991 .

[105]  R. Averback,et al.  Diffusion in Nanocrystalline Materials , 1991 .

[106]  J. Horváth Diffusion in Nanocrystalline Materials , 1991 .

[107]  I-Wei Chen,et al.  Development of Superplastic Structural Ceramics , 1990 .

[108]  H. Roman,et al.  A continuum percolation model for dispersed ionic conductors , 1990 .

[109]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[110]  R. Huggins Solid State Ionics , 1989 .

[111]  Richard W. Siegel,et al.  Synthesis, characterization, and properties of nanophase TiO_2 , 1988 .

[112]  R. Birringer,et al.  Ceramics ductile at low temperature , 1987, Nature.

[113]  R. Gerhardt,et al.  Grain‐Boundary Effect in Ceria Doped with Trivalent Cations: II, Microstructure and Microanalysis , 1986 .

[114]  R. Gerhardt,et al.  Grain‐Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements , 1986 .

[115]  Bunde,et al.  Conductivity of dispersed ionic conductors: A percolation model with two critical points. , 1986, Physical review. B, Condensed matter.

[116]  A. Henglein,et al.  Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles , 1986 .

[117]  Bunde,et al.  Dispersed ionic conductors and percolation theory. , 1985, Physical review letters.

[118]  J. Maier Enhancement of the Ionic Conductivity in Solid‐Solid‐Dispersions by Surface Induced Defects , 1984 .

[119]  A. Weiss,et al.  E. Fukushima, St. B. W. Roeder: Experimental Pulse NMR. A Nuts and Bolts Approach. Addison‐Wesley Publ. Comp., Inc., Reading, Massachusetts 1981. 539 Seiten, Preis: US $ 34.50 , 1983 .

[120]  Graeme E. Murch,et al.  The haven ratio in fast ionic conductors , 1982 .

[121]  H. Rickert Electrochemistry of Solids: An Introduction , 1982 .

[122]  M. Verkerk,et al.  Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics , 1982 .

[123]  M. Whittingham Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1979 .

[124]  M. Seitz,et al.  The ac electrical behavior of polycrystalline ZrO2CaO , 1978 .

[125]  W. Rhim,et al.  Calculation of spin–lattice relaxation during pulsed spin locking in solids , 1978 .

[126]  A. Lipilin,et al.  Effect of the grain size on the conductivity of high‐purity pore‐free ceramics Y2O8–ZrO2 , 1975 .

[127]  Keiske Kaji,et al.  X-Ray Diffraction Procedures , 1975 .

[128]  C. Liang Conduction Characteristics of the Lithium Iodide‐Aluminum Oxide Solid Electrolytes , 1973 .

[129]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[130]  B. Warren,et al.  The Separation of Cold‐Work Distortion and Particle Size Broadening in X‐Ray Patterns , 1952 .

[131]  E. Purcell,et al.  Relaxation Effects in Nuclear Magnetic Resonance Absorption , 1948 .

[132]  P. Heitjans,et al.  Diffusion and ionic conduction in nanocrystalline ceramics , 2003 .

[133]  R. Tannenbaum,et al.  Synthesis, functional properties and applications of nanostructures : symposium held April 17-20, 2001, San Francisco, California, U.S.A , 2002 .

[134]  Hari Singh Nalwa,et al.  Handbook of nanostructured materials and nanotechnology , 2000 .

[135]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[136]  Rafael Reif,et al.  Electrochemical and Solid-Sates Letters , 1999 .

[137]  P. Heitjans,et al.  NMR relaxation and line shape study on Li+ diffusion in nanocrystalline layer-structured LixTiS2 , 1999 .

[138]  U. Brossmann,et al.  18O Diffusion in nano crystalline ZrO2 , 1999 .

[139]  H. Hahn,et al.  Ductility of nanocrystalline zirconia based ceramics at low temperatures , 1999 .

[140]  H. Hahn,et al.  Different zirconia-alumina nanopowders by modifications of chemical vapor synthesis , 1999 .

[141]  J. J. Schneider Nanomaterials: Synthesis, properties and applications. Edited by A. S. Edelstein and R. C. Cammarata, Institute of Physics Publishing, Bristol, UK 1996. xix, 596 pp., hardcover, $280, ISBN 07503‐0358‐1 , 1997 .

[142]  K. Reimann,et al.  Electron microscopy of nanocrystalline BaTiO3 , 1997 .

[143]  Yet-Ming Chiang,et al.  Nonstoichiometry and Electrical Conductivity of Nanocrystalline CeO $${2 - x} $$ , 1997 .

[144]  Robert C. Cammarata,et al.  Nanomaterials : synthesis, properties, and applications , 1996 .

[145]  M. Mayo Processing of nanocrystalline ceramics from ultrafine particles , 1996 .

[146]  Y. Mishin,et al.  Fundamentals of grain and interphase boundary diffusion , 1995 .

[147]  ScienceDirect Scripta metallurgica et materialia , 1995 .

[148]  P. Heitjans,et al.  Frequency dependent ionic conductivity in nanocrystalline CaF2 studied by impedance spectroscopy , 1995 .

[149]  A. Weidinger,et al.  Nuclear Condensed Matter Physics: Nuclear Methods and Applications , 1995 .

[150]  H. Fecht Nanostructure formation by mechanical attrition , 1995 .

[151]  Y. Mishin,et al.  Diffusion in fine-grained materials: Theoretical aspects and experimental possibilities , 1995 .

[152]  K. A. Padmanabhan,et al.  Mechanical response of nanostructured materials , 1995 .

[153]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .

[154]  H. Schaefer,et al.  Phase transformation and interface structure of nanocrystalline ZrO2 , 1993 .

[155]  K. Funke,et al.  Jump relaxation in solid electrolytes , 1993 .

[156]  D. Fisher Defect and diffusion forum , 1991 .

[157]  M. Bee Quasielastic neutron scattering , 1988 .

[158]  P. Heitjans Use of beta radiation-detected NMR to study ionic motion in solids , 1986 .

[159]  P. Heitjans,et al.  Self-diffusion in solid lithium probed by spin-lattice relaxation of 8Li nuclei , 1985 .

[160]  Robert A. Huggins,et al.  Electrochemical Methods for Determining Kinetic Properties of Solids , 1978 .

[161]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[162]  W. Jost,et al.  Physical Chemistry, An Advanced Treatise , 1974 .

[163]  N. Hannay,et al.  Treatise on solid state chemistry , 1973 .

[164]  L. Alexander,et al.  X-ray diffraction procedures , 1954 .

[165]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .