Diffusion and Ionic Conduction in Nanocrystalline Ceramics
暂无分享,去创建一个
[1] P. Heitjans,et al. Heterogeneous lithium diffusion in nanocrystalline Li2O:Al2O3 composites , 2003 .
[2] R. Kubo. Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .
[3] M. Winterer. Nanocrystalline Ceramics: Synthesis and Structure , 2002 .
[4] P. Heitjans,et al. Heterogeneous 7Li NMR relaxation in nanocrystalline Li2O:B2O3 composites , 2002 .
[5] P. Heitjans,et al. Diffusion in amorphous LiNbO3 studied by 7Li NMR — comparison with the nano- and microcrystalline material , 2002 .
[6] C. Herzig,et al. 59Fe Grain boundary diffusion in nanostructured γ-Fe–Ni , 2002 .
[7] C. Herzig,et al. 59Fe Grain boundary diffusion in nanostructured γ-Fe–Ni , 2002 .
[8] M. Armand,et al. Issues and challenges facing rechargeable lithium batteries , 2001, Nature.
[9] P. Heitjans,et al. Intergranular structure of nanocrystalline layered LixTiS2 as derived from 7Li NMR spectroscopy , 2001 .
[10] J. Íñiguez,et al. Anomalous properties in ferroelectrics induced by atomic ordering , 2001, Nature.
[11] P. Heitjans,et al. NMR Investigations on Ion Dynamics and Structure in Nanocrystalline and Polycrystalline LiNbO3 , 2001 .
[12] R. Brusa,et al. Deuterium effusion from nanocrystalline boron nitride thin films , 2001 .
[13] L. Gauckler,et al. Sintering of Nanocrystalline CeO2 Ceramics , 2001 .
[14] P. Heitjans,et al. Li+ Diffusion and its Structural Basis in the Nanocrystalline and Amorphous Forms of Two-dimensionally Ion-conducting LixTiS2 , 2001 .
[15] T. Tsuzuki,et al. SnO2 nanoparticles prepared by mechanochemical processing , 2001 .
[16] P. Heitjans,et al. Li Diffusion in Nano- and Microcrystalline (1-x)Li2O:xB2O3 , 2001 .
[17] O. Oreshina,et al. Triple Junction Diffusion: Experiments and Models , 2001 .
[18] Andreas Tschöpe,et al. Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model , 2001 .
[19] R. Birringer,et al. Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments , 2001 .
[20] R. Borzi,et al. Microstructural and magnetic characterization of nanostructured α-Fe2O3 and CuO mixtures obtained by ball milling , 2001 .
[21] A. Miotello,et al. Structural evolution of Fe-Al multilayer thin films for different annealing temperatures , 2001 .
[22] A. Benker,et al. Luminescence properties of nanocrystalline Y2O3:Eu3+ in different host materials , 2001 .
[23] Shiyan Li,et al. Magnetotransport and the Shubnikov-de Haas effect in quasi-two-dimensional purple bronze TlMo6O17 , 2001 .
[24] K. Eberl,et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.
[25] Philippe Knauth,et al. Solute segregation, electrical properties and defect thermodynamics of nanocrystalline TiO2 and CeO2 , 2000 .
[26] Philippe Guyot-Sionnest,et al. n-type colloidal semiconductor nanocrystals , 2000, Nature.
[27] P. Knauth. Ionic Conductor Composites: Theory and Materials , 2000 .
[28] H. Kliem,et al. Detection of Space Charge Limited Currents in Nanoscaled Titania , 2000 .
[29] J. Tarascon,et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.
[30] A. Chadwick,et al. An EXAFS study of nanocrystalline yttrium stabilized cubic zirconia films and pure zirconia powders , 2000 .
[31] Philippe M. Fauchet,et al. Ordering and self-organization in nanocrystalline silicon , 2000, Nature.
[32] Arnaud Fernandez,et al. TEM study of fractal scaling in nanoparticle agglomerates obtained by gas-phase condensation , 2000 .
[33] J. Dahn,et al. Reaction of Li with Grain‐Boundary Atoms in Nanostructured Compounds , 2000 .
[34] R. Hempelmann,et al. μSR-Experiments on proton-conducting oxides , 2000 .
[35] P. Heitjans,et al. Nanocrystalline Oxide Ceramics Prepared by High-Energy Ball Milling , 2000 .
[36] Alfredo Caro,et al. Grain-boundary structures in polycrystalline metals at the nanoscale , 2000 .
[37] R. Birringer,et al. Elastic properties of single-crystalline and consolidated nano-structured yttrium oxide at room temperature , 2000 .
[38] J. Maier. Point Defect Thermodynamics: Macro- vs. Nanocrystals , 2000 .
[39] P. Heitjans,et al. Local and overall ionic conductivity in nanocrystalline CaF2 , 2000 .
[40] Juergen Fleig. The influence of non-ideal microstructures on the analysis of grain boundary impedances , 2000 .
[41] Harry L. Tuller,et al. Ionic conduction in nanocrystalline materials , 2000 .
[42] J. Maier. Point-defect thermodynamics and size effects , 2000 .
[43] P. Heitjans,et al. Mechanochemical Preparation and Characterization of Nanocrystalline Ceramic Composites , 2000 .
[44] H. Fuess,,et al. Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2 , 2000, Ultramicroscopy.
[45] P. Heitjans,et al. Nanocrystalline versus microcrystalline Li(2)O:B(2)O3 composites: anomalous ionic conductivities and percolation theory , 2000, Physical review letters.
[46] I. Chen,et al. Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.
[47] Weidong Yang,et al. Shape control of CdSe nanocrystals , 2000, Nature.
[48] Y. Waseda,et al. Nanocrystalline MgAl2O4: Measurement of Thermodynamic Properties Using a Solid State Cell , 2000 .
[49] C. K. Kim,et al. Calculation of the contribution to grain boundary diffusion in ionic systems that arises from enhanced defect concentrations adjacent to the boundary , 2000 .
[50] John Abrahamson,et al. Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil , 2000, Nature.
[51] Jackie Y. Ying,et al. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion , 2000, Nature.
[52] Porto,et al. Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles , 2000, Physical review letters.
[53] R. Würschum. Diffusion in nanocrystalline metals and alloys , 1999 .
[54] S. Phillpot,et al. Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation , 1999 .
[55] J. Jamnik,et al. In Situ Monitoring and Quantitative Analysis of Oxygen Diffusion Through Schottky‐Barriers in SrTiO3 Bicrystals , 1999 .
[56] C. Nan,et al. Grain size-dependent electrical properties of nanocrystalline ZnO , 1999 .
[57] H. Schaefer,et al. OXYGEN DIFFUSION IN ULTRAFINE GRAINED MONOCLINIC ZRO2 , 1999 .
[58] C. Demetry,et al. Grain size-dependent electrical properties of rutile (TiO2) , 1999 .
[59] W. Jaegermann,et al. Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia , 1999 .
[60] Liang-ying Zhang,et al. An Effective Synthetic Route for a Novel Electrolyte: Nanocrystalline Solid Solutions of (CeO2)1–x(BiO1.5)x , 1999 .
[61] H. Tuller,et al. Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide , 1999 .
[62] G. Hadjipanayis,et al. MAGNETIZATION TEMPERATURE DEPENDENCE IN IRON NANOPARTICLES , 1998 .
[63] P. Heitjans,et al. NMR Relaxation Study of Ion Dynamics in Nanocrystalline and Polycrystalline LiNbO3 , 1998 .
[64] J. Weissmüller,et al. SEGREGATION-INDUCED INSTABILITY OF NANOCRYSTALLINE LINE COMPOUNDS , 1998 .
[65] P. Knauth,et al. Enhanced electrical conductivity of CuBr-TiO2 composites: Dependence on temperature, volume fractions and grain sizes , 1998 .
[66] R. Andrievski. State-of-the-Art and Perspectives in Pariculate Nanostructured Materials , 1998 .
[67] R. Birringer,et al. Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis , 1998 .
[68] Sidney Yip,et al. Nanocrystals: The strongest size , 1998, Nature.
[69] H. Mamiya,et al. Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems , 1998 .
[70] Jackie Y. Ying,et al. Research Needs Assessment on Nanostructured Catalysts , 1997 .
[71] H. Tuller. Solid State Electrochemical Systems–Opportunities for Nanofabricated or Nanostructured Materials , 1997 .
[72] R. Hempelmann,et al. Nanocrystalline materials: Nanocrystalline metals and oxides I: Pulsed electrodeposition , 1997 .
[73] C. Nan,et al. Anomalous Space‐Charge Limited Currents in Nanocrystalline ZnO , 1997 .
[74] R. Hempelmann,et al. Nanocrystalline metals and oxides II: Reverse microemulsions , 1997 .
[75] P. Knauth,et al. Enhanced conductivity in ionic conductor-insulator composites: Experiments and numerical model , 1997 .
[76] C. Nan,et al. Infrared Reflectance and an Evidence for Low Carrier Density of Nanocrystalline ZnO , 1997 .
[77] P. Heitjans,et al. Nuclear magnetic and conductivity relaxations by Li diffusion in glassy and crystalline LiAlSi4O10 , 1997 .
[78] R. N. Viswanath,et al. Preparation and ferroelectric phase transition studies of nanocrystalline BaTiO3 , 1997 .
[79] A. Chadwick,et al. The Preparation of Nanocrystalline Oxides and Their Characterisation using Synchrotron Techniques , 1997 .
[80] Hermann Schmalzried,et al. Chemical Kinetics of Solids , 1997 .
[81] Harlan U. Anderson,et al. The transport properties of nanocrystalline SrCe0.95Yb0.05O3 thin films , 1996 .
[82] W. Steckelmacher. Encyclopedia of applied physics , 1996 .
[83] R. Würschum,et al. Correlation between the kinetics of the amorphous‐to‐nanocrystalline transformation and the diffusion in alloys , 1996 .
[84] Jackie Y. Ying,et al. Defect and transport properties of nanocrystalline CeO2-x , 1996 .
[85] A. Bunde,et al. A unified site relaxation model for ion mobility in glassy materials , 1996 .
[86] Y. Chiang,et al. Solute Segregation and Grain‐Boundary Impedance in High‐Purity Stabilized Zirconia , 1996 .
[87] P. Nordblad,et al. Aging in a magnetic particle system. , 1995, Physical review letters.
[88] Sanders,et al. Are nanophase grain boundaries anomalous? , 1995, Physical review letters.
[89] S. Phillpot,et al. A structural model for grain boundaries in nanocrystalline materials , 1995 .
[90] Richard W. Siegel,et al. Impedance spectroscopy of grain boundaries in nanophase ZnO , 1995 .
[91] Löffler,et al. Grain-boundary atomic structure in nanocrystalline palladium from x-ray atomic distribution functions. , 1995, Physical review. B, Condensed matter.
[92] C. Chateau,et al. Ionic conductivity of yttrium-doped zirconia and the “composite effect” , 1995 .
[93] D. Wolf,et al. Molecular‐dynamics study of the synthesis and characterization of a fully dense, three‐dimensional nanocrystalline material , 1995 .
[94] J. Yates,et al. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .
[95] Chen,et al. Enhanced magnetization of nanoscale colloidal cobalt particles. , 1995, Physical review. B, Condensed matter.
[96] G. L. Trigg,et al. Encyclopedia of Applied Physics , 1994 .
[97] P. Heitjans,et al. 7Li NMR relaxation by diffusion in hexagonal and cubic LixTiS2 , 1994 .
[98] S. Rajendran,et al. Effect of micro- and nano-structures on the properties of ionic conductors , 1994 .
[99] P. Schwander,et al. Effect of intergranular glass films on the electrical conductivity of 3Y-TZP , 1994 .
[100] Meyer,et al. Spin-lattice relaxation: Non-Bloembergen-Purcell-Pound behavior by structural disorder and Coulomb interactions. , 1993, Physical review letters.
[101] P. Heitjans,et al. 7Li‐NMR Study of Diffusion‐Induced Spin‐Lattice Relaxation in Glassy and Crystalline LiAlSi2O6 , 1992 .
[102] W. Johnson,et al. Reversible grain size changes in ball-milled nanocrystalline Fe–Cu alloys , 1992 .
[103] H. Gleiter. Diffusion in Nanostructured Metals , 1992 .
[104] Alan V. Chadwick,et al. Electrical conductivity measurements of ionic solids , 1991 .
[105] R. Averback,et al. Diffusion in Nanocrystalline Materials , 1991 .
[106] J. Horváth. Diffusion in Nanocrystalline Materials , 1991 .
[107] I-Wei Chen,et al. Development of Superplastic Structural Ceramics , 1990 .
[108] H. Roman,et al. A continuum percolation model for dispersed ionic conductors , 1990 .
[109] D. Longmore. The principles of magnetic resonance. , 1989, British medical bulletin.
[110] R. Huggins. Solid State Ionics , 1989 .
[111] Richard W. Siegel,et al. Synthesis, characterization, and properties of nanophase TiO_2 , 1988 .
[112] R. Birringer,et al. Ceramics ductile at low temperature , 1987, Nature.
[113] R. Gerhardt,et al. Grain‐Boundary Effect in Ceria Doped with Trivalent Cations: II, Microstructure and Microanalysis , 1986 .
[114] R. Gerhardt,et al. Grain‐Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements , 1986 .
[115] Bunde,et al. Conductivity of dispersed ionic conductors: A percolation model with two critical points. , 1986, Physical review. B, Condensed matter.
[116] A. Henglein,et al. Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles , 1986 .
[117] Bunde,et al. Dispersed ionic conductors and percolation theory. , 1985, Physical review letters.
[118] J. Maier. Enhancement of the Ionic Conductivity in Solid‐Solid‐Dispersions by Surface Induced Defects , 1984 .
[119] A. Weiss,et al. E. Fukushima, St. B. W. Roeder: Experimental Pulse NMR. A Nuts and Bolts Approach. Addison‐Wesley Publ. Comp., Inc., Reading, Massachusetts 1981. 539 Seiten, Preis: US $ 34.50 , 1983 .
[120] Graeme E. Murch,et al. The haven ratio in fast ionic conductors , 1982 .
[121] H. Rickert. Electrochemistry of Solids: An Introduction , 1982 .
[122] M. Verkerk,et al. Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics , 1982 .
[123] M. Whittingham. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1979 .
[124] M. Seitz,et al. The ac electrical behavior of polycrystalline ZrO2CaO , 1978 .
[125] W. Rhim,et al. Calculation of spin–lattice relaxation during pulsed spin locking in solids , 1978 .
[126] A. Lipilin,et al. Effect of the grain size on the conductivity of high‐purity pore‐free ceramics Y2O8–ZrO2 , 1975 .
[127] Keiske Kaji,et al. X-Ray Diffraction Procedures , 1975 .
[128] C. Liang. Conduction Characteristics of the Lithium Iodide‐Aluminum Oxide Solid Electrolytes , 1973 .
[129] J. Westwater,et al. The Mathematics of Diffusion. , 1957 .
[130] B. Warren,et al. The Separation of Cold‐Work Distortion and Particle Size Broadening in X‐Ray Patterns , 1952 .
[131] E. Purcell,et al. Relaxation Effects in Nuclear Magnetic Resonance Absorption , 1948 .
[132] P. Heitjans,et al. Diffusion and ionic conduction in nanocrystalline ceramics , 2003 .
[133] R. Tannenbaum,et al. Synthesis, functional properties and applications of nanostructures : symposium held April 17-20, 2001, San Francisco, California, U.S.A , 2002 .
[134] Hari Singh Nalwa,et al. Handbook of nanostructured materials and nanotechnology , 2000 .
[135] H. Gleiter,et al. Nanostructured materials: basic concepts and microstructure☆ , 2000 .
[136] Rafael Reif,et al. Electrochemical and Solid-Sates Letters , 1999 .
[137] P. Heitjans,et al. NMR relaxation and line shape study on Li+ diffusion in nanocrystalline layer-structured LixTiS2 , 1999 .
[138] U. Brossmann,et al. 18O Diffusion in nano crystalline ZrO2 , 1999 .
[139] H. Hahn,et al. Ductility of nanocrystalline zirconia based ceramics at low temperatures , 1999 .
[140] H. Hahn,et al. Different zirconia-alumina nanopowders by modifications of chemical vapor synthesis , 1999 .
[141] J. J. Schneider. Nanomaterials: Synthesis, properties and applications. Edited by A. S. Edelstein and R. C. Cammarata, Institute of Physics Publishing, Bristol, UK 1996. xix, 596 pp., hardcover, $280, ISBN 07503‐0358‐1 , 1997 .
[142] K. Reimann,et al. Electron microscopy of nanocrystalline BaTiO3 , 1997 .
[143] Yet-Ming Chiang,et al. Nonstoichiometry and Electrical Conductivity of Nanocrystalline CeO $${2 - x} $$ , 1997 .
[144] Robert C. Cammarata,et al. Nanomaterials : synthesis, properties, and applications , 1996 .
[145] M. Mayo. Processing of nanocrystalline ceramics from ultrafine particles , 1996 .
[146] Y. Mishin,et al. Fundamentals of grain and interphase boundary diffusion , 1995 .
[147] ScienceDirect. Scripta metallurgica et materialia , 1995 .
[148] P. Heitjans,et al. Frequency dependent ionic conductivity in nanocrystalline CaF2 studied by impedance spectroscopy , 1995 .
[149] A. Weidinger,et al. Nuclear Condensed Matter Physics: Nuclear Methods and Applications , 1995 .
[150] H. Fecht. Nanostructure formation by mechanical attrition , 1995 .
[151] Y. Mishin,et al. Diffusion in fine-grained materials: Theoretical aspects and experimental possibilities , 1995 .
[152] K. A. Padmanabhan,et al. Mechanical response of nanostructured materials , 1995 .
[153] Joachim Maier,et al. Ionic conduction in space charge regions , 1995 .
[154] H. Schaefer,et al. Phase transformation and interface structure of nanocrystalline ZrO2 , 1993 .
[155] K. Funke,et al. Jump relaxation in solid electrolytes , 1993 .
[156] D. Fisher. Defect and diffusion forum , 1991 .
[157] M. Bee. Quasielastic neutron scattering , 1988 .
[158] P. Heitjans. Use of beta radiation-detected NMR to study ionic motion in solids , 1986 .
[159] P. Heitjans,et al. Self-diffusion in solid lithium probed by spin-lattice relaxation of 8Li nuclei , 1985 .
[160] Robert A. Huggins,et al. Electrochemical Methods for Determining Kinetic Properties of Solids , 1978 .
[161] W. D. Kingery,et al. Introduction to Ceramics , 1976 .
[162] W. Jost,et al. Physical Chemistry, An Advanced Treatise , 1974 .
[163] N. Hannay,et al. Treatise on solid state chemistry , 1973 .
[164] L. Alexander,et al. X-ray diffraction procedures , 1954 .
[165] M. Smoluchowski. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .