Questions Related to Gaussian Quadrature Formulas and Two-Term Recursions

There are theoretical and practical reasons for preferring coupled two-term recursion to three-term recursion when working with orthogonal polynomials, especially in problems related to Gaussian quadrature.

[1]  W. Gragg,et al.  The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .

[2]  Dirk P. Laurie Accurate recovery of recursion coe cients from Gaussian quadrature formulas , 1999 .

[3]  B. Parlett,et al.  Accurate singular values and differential qd algorithms , 1994 .

[4]  G. Golub,et al.  Modified moments for indefinite weight functions , 1990 .

[5]  H. Rutishauser Der Quotienten-Differenzen-Algorithmus , 1954 .

[6]  W. Gautschi On Generating Orthogonal Polynomials , 1982 .

[7]  R. A. Sack,et al.  An algorithm for Gaussian quadrature given modified moments , 1971 .

[8]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[9]  E. Cheney Introduction to approximation theory , 1966 .

[10]  Dirk Laurie,et al.  Calculation of Gauss-Kronrod quadrature rules , 1997, Math. Comput..

[11]  Dirk P. Laurie,et al.  Anti-Gaussian quadrature formulas , 1996, Math. Comput..

[12]  H. Rutishauser Stabile Sonderfälle des Quotienten-Differenzen-Algorithmus , 1963 .

[13]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.

[14]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .