Active Gust Alleviation using Artificial Hair Sensors and Feedforward Control

[1]  S. M. Mangalam Phenomena-based real-time aerodynamic measurement system (PRAMS) , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[2]  Richard H. Middleton,et al.  An integral constraint for single input two output feedback systems , 2001, Autom..

[3]  Christopher V. Hollot,et al.  A single-input two-output feedback formulation for ANC problems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[4]  Arun S. Mangalam,et al.  Unsteady Aerodynamic Observable for Gust Load Alleviation and Flutter Suppression , 2008 .

[5]  Natsuki Tsushima,et al.  Modeling of Highly Flexible Multifunctional Wings for Energy Harvesting , 2015 .

[6]  T. E. Disney,et al.  C-5A Active Load Alleviation System , 1977 .

[7]  Benjamin T. Dickinson Detecting fluid flows with bioinspired hair sensors , 2009 .

[8]  T. Mueller Low Reynolds Number Aerodynamics , 1989 .

[9]  Raymond A. de Callafon,et al.  Adaptive Feedback Control Algorithm for Flutter Boundary Expansion , 2009 .

[10]  A. Wildschek,et al.  Integrated adaptive feed-forward control of atmospheric turbulence excited rigid body motions and structural vibrations on a large transport aircraft , 2008, 2008 American Control Conference.

[11]  Klaus-Uwe Hahn,et al.  Flight Test with an Adaptive Feed-Forward Controller for Alleviation of Turbulence Excited Wing Bending Vibrations , 2009 .

[12]  Kaman Thapa Magar,et al.  Aerodynamic parameters from distributed heterogeneous CNT hair sensors with a feedforward neural network , 2016, Bioinspiration & biomimetics.

[13]  Benjamin T. Dickinson,et al.  Bioinspired Carbon Nanotube Fuzzy Fiber Hair Sensor for Air‐Flow Detection , 2014, Advanced materials.

[14]  Kaman Thapa Magar,et al.  Aerodynamic Parameter Prediction on a Airfoil with Flap via Artificial Hair Sensors and Feedforward Neural Network , 2016 .