Symmetric and unsymmetric 3,3'-linked bispyrroles via ring-enlargement reactions of furan-derived donor-acceptor cyclopropanes.

A short and concise sequence for the synthesis of symmetrically and unsymmetrically substituted 3,3'-linked bispyrroles is described. Furan as a starting material is subjected to a twofold cyclopropanation by a diazo ester. Conversion of the ester functionalities to the respective ketones is achieved via Weinreb amide formation and the attack of a Grignard reagent. In the presence of amines the ketone moieties form imines that rearrange by ring-enlargement of the three-membered to the five-membered rings. In situ generated dihydropyrrole moieties eliminate water and afford aromatic pyrrole units. Unsymmetric bispyrroles are obtained by using different cyclopropanating agents or varying Grignard reagents for ketone formation before the addition of amines initiates the cascade to the respective bispyrroles.

[1]  D. Stalke,et al.  Donor-acceptor cyclopropanes with Lawesson's and Woollins' reagents: formation of bisthiophenes and unprecedented cage-like molecules. , 2013, Chemical communications.

[2]  D. Stalke,et al.  Domino reactions of donor-acceptor-substituted cyclopropanes for the synthesis of 3,3'-linked oligopyrroles and pyrrolo[3,2-e]indoles. , 2012, Angewandte Chemie.

[3]  Zhongwen Wang Polar Intramolecular Cross-Cycloadditions of Cyclopropanes toward Natural Product Synthesis , 2012, Synlett.

[4]  Hao Li,et al.  FeCl3 promoted highly regioselective [3 + 2] cycloaddition of dimethyl 2-vinyl and aryl cyclopropane-1,1-dicarboxylates with aryl isothiocyanates. , 2012, Organic & biomolecular chemistry.

[5]  S. Roy,et al.  A catalytic multicomponent approach for the stereoselective synthesis of cis-4,5-disubstituted pyrrolidinones and tetrahydro-3H-pyrrolo[3,2-c]quinolines. , 2012, Angewandte Chemie.

[6]  Cheol‐Min Park,et al.  Synthesis of 2-aminofurans and 2-unsubstituted furans via carbenoid-mediated [3 + 2] cycloaddition. , 2012, Chemical communications.

[7]  S. Gharpure,et al.  Stereoselective synthesis and applications of nitrogen substituted donor-acceptor cyclopropanes (N-DACs) in the divergent synthesis of azacycles. , 2012, Organic & biomolecular chemistry.

[8]  J. Waser,et al.  Iron-catalyzed [3 + 2] annulation of aminocyclopropanes with aldehydes: stereoselective synthesis of aminotetrahydrofurans. , 2012, Organic letters.

[9]  Zhen Li,et al.  Lewis acid catalyzed intramolecular [3+2] cross-cycloaddition of donor-acceptor cyclopropanes with carbonyls: a general strategy for the construction of acetal[n.2.1] skeletons. , 2011, Angewandte Chemie.

[10]  J. Waser,et al.  Catalytic [3+2] annulation of aminocyclopropanes for the enantiospecific synthesis of cyclopentylamines. , 2011, Angewandte Chemie.

[11]  D. Werz,et al.  Ring-enlargement reactions of donor-acceptor-substituted cyclopropanes: which combinations are most efficient? , 2011, Organic letters.

[12]  D. Werz,et al.  From furan to molecular stairs: syntheses, structural properties, and theoretical investigations of oligocyclic oligoacetals. , 2010, Chemistry.

[13]  J. Gertsch,et al.  Catalytic selective cyclizations of aminocyclopropanes: formal synthesis of aspidospermidine and total synthesis of goniomitine. , 2010, Angewandte Chemie.

[14]  B. Pagenkopf,et al.  Synthesis of 5-azaindoles via a cycloaddition reaction between nitriles and donor-acceptor cyclopropanes. , 2010, Organic letters.

[15]  Siyang Xing,et al.  Efficient construction of oxa- and aza-[n.2.1] skeletons: Lewis acid catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with carbonyls and imines. , 2010, Angewandte Chemie.

[16]  M. Kerr,et al.  Total synthesis of (+)-isatisine A. , 2010, Angewandte Chemie.

[17]  A. Kapdi,et al.  Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. , 2009, Angewandte Chemie.

[18]  M. Shukla,et al.  Stereoselective synthesis of donor-acceptor substituted cyclopropafuranones by intramolecular cyclopropanation of vinylogous carbonates: divergent synthesis of tetrahydrofuran-3-one, tetrahydropyran-3-one, and lactones. , 2009, Organic letters.

[19]  D. Werz,et al.  Synthesis of [n,5]-spiroketals by ring enlargement of donor-acceptor-substituted cyclopropane derivatives. , 2009, The Journal of organic chemistry.

[20]  M. Kerr,et al.  Heterocycles from cyclopropanes: applications in natural product synthesis. , 2009, Chemical Society reviews.

[21]  G. Sheldrick,et al.  A comparison of a microfocus X‐ray source and a conventional sealed tube for crystal structure determination , 2009 .

[22]  B. Pagenkopf,et al.  Synthesis of tetrahydroisoquinocarbazoles via C-2 alkylation of indoles with 2-alkoxycyclopropanoate esters. , 2009, Organic letters.

[23]  D. Werz,et al.  anti-Oligoannelated THF moieties: synthesis via push-pull-substituted cyclopropanes. , 2009, Organic letters.

[24]  A. T. Parsons,et al.  Catalytic enantioselective synthesis of tetrahydrofurans: a dynamic kinetic asymmetric [3 + 2] cycloaddition of racemic cyclopropanes and aldehydes. , 2009, Journal of the American Chemical Society.

[25]  D. Agrawal,et al.  Silylmethyl-substituted cyclopropyl and other strained ring systems: cycloaddition with dipolarophiles. , 2008, Chemical communications.

[26]  J. Ready,et al.  Synthesis of cyclopentenones from cyclopropanes and silyl ynol ethers. , 2008, Angewandte Chemie.

[27]  P. Pohlhaus,et al.  Scope and mechanism for lewis acid-catalyzed cycloadditions of aldehydes and donor-acceptor cyclopropanes: evidence for a stereospecific intimate ion pair pathway. , 2008, Journal of the American Chemical Society.

[28]  C. Che,et al.  Ruthenium-catalyzed one-pot carbenoid N-H insertion reactions and diastereoselective synthesis of prolines. , 2008, Organic letters.

[29]  S. Dey,et al.  Lewis acid-catalyzed one-pot, three-component route to chiral 3,3'-bipyrroles. , 2008, Organic letters.

[30]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[31]  P. Pohlhaus,et al.  Enantiospecific Sn(II)- and Sn(IV)-catalyzed cycloadditions of aldehydes and donor-acceptor cyclopropanes. , 2005, Journal of the American Chemical Society.

[32]  M. M. Díaz‐Requejo,et al.  Copper-catalyzed addition of ethyl diazoacetate to furans: an alternative to dirhodium(II) tetraacetate. , 2005, The Journal of organic chemistry.

[33]  Ryan P. Wurz,et al.  Doubly activated cyclopropanes as synthetic precursors for the preparation of 4-nitro- and 4-cyano-dihydropyrroles and pyrroles. , 2005, Organic letters.

[34]  Ming‐Shiuan Yu,et al.  Recent advances in donor-acceptor (DA) cyclopropanes , 2005 .

[35]  K. Jørgensen,et al.  Cu(I)-carbenoid- and Ag(I)-Lewis acid-catalyzed asymmetric intermolecular insertion of alpha-diazo compounds into N-H bonds. , 2004, Organic & biomolecular chemistry.

[36]  J. Sessler,et al.  Synthesis of 2,2'-bipyrroles and 2,2'-thienylpyrroles from donor-acceptor cyclopropanes and 2-cyanoheteroles. , 2004, Organic letters.

[37]  Ming‐Shiuan Yu,et al.  A powerful new strategy for diversity-oriented synthesis of pyrroles from donor-acceptor cyclopropanes and nitriles. , 2003, Organic letters.

[38]  O. Reiser,et al.  Facile asymmetric synthesis of the core nuclei of xanthanolides, guaianolides, and eudesmanolides. , 2003, Organic letters.

[39]  R. Zimmer,et al.  Donor-acceptor-substituted cyclopropane derivatives and their application in organic synthesis. , 2003, Chemical reviews.

[40]  N. Ono,et al.  Novel Preparation of ,'-Connected Porphyrin Dimers. , 2002 .

[41]  W. Shi,et al.  A kinetic study on the pairwise competition reaction of alpha-diazo esters with rhodium(II) catalysts: implication for the mechanism of Rh(II)-carbene transfer. , 2001, The Journal of organic chemistry.

[42]  E. Parisini,et al.  A New Strategy for the Stereoselective Synthesis of 1,2,3‐Trisubstituted Cyclopropanes , 2000 .

[43]  E. Wenkert,et al.  Facile Synthesis of Furan‐3,4‐diacetates , 1998 .

[44]  V. Rotello,et al.  Singlet oxygen in synthesis. Formation of d,l- and meso-isochrysohermidin from a 3,3′-bipyrrole precursor , 1997 .

[45]  R. Gleiter,et al.  The palladium mediated conversion of 1,6-diazacyclodeca-3,8-diynes to 3,3′-bispyrroles. An unexpected reorganization of an alkyne π-system , 1996 .

[46]  H. Reissig,et al.  Swern Oxidation of Alkenyl‐Substituted 2‐(tert‐Butyldimethylsiloxy)‐1‐(hydroxymethyl)cyclopropanes: A Novel and Flexibel Route to Functionalized 2,5‐Dihydrooxepines , 1994 .

[47]  D. Stalke,et al.  Crystal handling at low temperatures , 1993 .

[48]  H. Reissig,et al.  Synthesis of functionalized 2,5-dihydrooxepines by [3,3]-sigmatropic rearrangement of cyclopropane derivatives , 1993 .

[49]  T. Katoh,et al.  Synthesis of helical poly-.beta.-pyrroles. Multiple atropisomerism resulting in helical enantiomorphic conformations , 1990 .

[50]  H. Reissig Donor-acceptor-substituted cyclopropanes: versatile building blocks in organic synthesis , 1988 .

[51]  H. Reißig,et al.  Eine neue Synthese von Pyrrolderivaten , 1988 .

[52]  R. Naef,et al.  3-Lithiopyrroles by Halogen-Metal Interchange of 3-Bromo-1-(triissopropylsilyl)pyrroles. Synthesis of Verucarin E and Other 3-Substituted Pyrroles. Preliminary Communication† , 1984 .

[53]  E. Wenkert Oxycyclopropanes in organochemical synthesis , 1980 .

[54]  F. Ullmann Ueber symmetrische Biphenylderivate , 1904 .

[55]  F. Ullmann,et al.  Ueber Synthesen in der Biphenylreihe , 1901 .