Temperature and conductivity as control parameters for pollution-based real-time control.

Most sewer system performance indicators are not easily measurable online at high frequencies in wastewater systems, which hampers real-time control with those parameters. Instead of using a constituent of wastewater, an alternative could be to use characteristics of wastewater that are relatively easily measurable in sewer systems and could serve as indicator parameters for the dilution process of wastewater. This paper focuses on the possibility to use the parameters of temperature and conductivity. It shows a good relation of temperature and conductivity with the dilution of DWF (dry weather flow) during WWF (wet weather flow) a monitoring station in Graz, Austria, as an example. The simultaneous monitoring of both parameters leads to valuable back-up information in case one parameter (temperature) shows no reaction to a storm event. However, for various reasons, anomalies occur in the typical behaviour of both parameters. The frequency and extent of these anomalies will determine the usefulness of the proposed parameters in a system for pollution-based real-time control. Both the normal behaviour and the anomalies will be studied further by means of trend and correlation analyses of data to be obtained from a monitoring network for the parameters of interest that is currently being set up in the Netherlands.

[1]  Jean-Luc Bertrand-Krajewski,et al.  Practical aspects, experiences and strategies by using UV/VIS sensors for long-term sewer monitoring , 2006 .

[2]  S Winkler,et al.  Quantification of pollution loads from CSOs into surface water bodies by means of online techniques. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[3]  P A Vanrolleghem,et al.  On-line monitoring equipment for wastewater treatment processes: state of the art. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.