Determination of CNC processing parameters for the best wood surface quality via artificial neural network

[1]  Davor Z Antanasijević,et al.  PM(10) emission forecasting using artificial neural networks and genetic algorithm input variable optimization. , 2013, The Science of the total environment.

[2]  R. Kminiak,et al.  Medium-density Fiberboard (MDF) and Edge-glued Panels (EGP) after Edge Milling - Surface Roughness after Machining with Different Parameters , 2018 .

[3]  Sukru Ozsahin,et al.  Prediction of the optimum veneer drying temperature for good bonding in plywood manufacturing by means of artificial neural network , 2013, Wood Science and Technology.

[4]  Z. Zhong,et al.  Measurement of the surface roughness of wood based materials used in furniture manufacture , 2013 .

[5]  K. Palanikumar,et al.  Modeling for prediction of surface roughness in drilling MDF panels using response surface methodology , 2011 .

[6]  M. Alves,et al.  The quality of MDF workpieces machined in CNC milling machine in cutting speeds, feedrate, and depth of cut , 2015 .

[7]  S. Nath,et al.  Forecasting of PM10 Using Autoregressive Models and Exponential Smoothing Technique , 2017 .

[8]  V. N. Gaitonde,et al.  Machinability investigations on hardened AISI 4340 steel using coated carbide insert , 2012 .

[9]  Şükrü Özşahin,et al.  Optimization of some panel manufacturing parameters for the best bonding strength of plywood , 2013 .

[10]  Sukru Ozsahin,et al.  Prediction of equilibrium moisture content and specific gravity of heat treated wood by artificial neural networks , 2018, European Journal of Wood and Wood Products.

[11]  N. Baskar,et al.  Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation , 2011 .

[12]  Luis García Esteban,et al.  Prediction of plywood bonding quality using an artificial neural network , 2011 .

[13]  Ender Hazir,et al.  Optimization of wood machining parameters in CNC routers: Taguchi orthogonal array based simulated angling algorithm , 2019, Maderas. Ciencia y tecnología.

[14]  Tomasz Gawroński,et al.  Optimisation of CNC routing operations of wooden furniture parts , 2013 .

[15]  A. Sütçü Investigation of Parameters Affecting Surface Roughness in CNC Routing Operation on Wooden EGP , 2012 .

[16]  Dražen Bajić,et al.  Modeling of machined surface roughness and optimization of cutting parameters in face milling , 2008 .

[18]  Şükrü Özşahin,et al.  Employing artificial neural networks for minimizing surface roughness and power consumption in abrasive machining of wood , 2017, European Journal of Wood and Wood Products.

[19]  Ender Hazir,et al.  Effect of CNC application parameters on wooden surface quality , 2017 .

[20]  B. C. Bal,et al.  The effects of step over, feed rate and finish depth on the surface roughness of fiberboard processed with CNC machine , 2018 .

[21]  A. Sütçü,et al.  The Influence of Process Parameters on the Surface Roughness in Aesthetic Machining of Wooden Edge-Glued Panels (EGPs) , 2013 .

[22]  A. Çanakçı,et al.  Prediction of effect of reinforcement content, flake size and flake time on the density and hardness of flake AA2024-SiC nanocomposites using neural networks , 2018 .

[23]  Roger E. Hernández,et al.  The influence of cutting parameters on the surface quality of routed paper birch and surface roughness prediction modeling. , 2009 .

[24]  L. García Esteban,et al.  Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model , 2008 .

[25]  Murat Sarıkaya,et al.  Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL , 2014 .

[26]  B. C. Bal,et al.  Surface roughness of medium-density fiberboard processed with CNC machine , 2020 .