Convergent Lagrangian and domain cut method for nonlinear knapsack problems

Abstract The nonlinear knapsack problem, which has been widely studied in the OR literature, is a bounded nonlinear integer programming problem that maximizes a separable nondecreasing function subject to separable nondecreasing constraints. In this paper we develop a convergent Lagrangian and domain cut method for solving this kind of problems. The proposed method exploits the special structure of the problem by Lagrangian decomposition and dual search. The domain cut is used to eliminate the duality gap and thus to guarantee the finding of an optimal exact solution to the primal problem. The algorithm is first motivated and developed for singly constrained nonlinear knapsack problems and is then extended to multiply constrained nonlinear knapsack problems. Computational results are presented for a variety of medium- or large-size nonlinear knapsack problems. Comparison results with other existing methods are also reported.

[1]  D. H. Silvern Optimization of system reliability , 1963 .

[2]  A. Melman,et al.  An Efficient Method for a Class of Continuous Nonlinear Knapsack Problems , 2000, SIAM Rev..

[3]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[4]  Hans Ziegler,et al.  Solving certain singly constrained convex optimization problems in production planning , 1982, Oper. Res. Lett..

[5]  Arthur M. Geoffrion,et al.  Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.

[6]  Duan Li,et al.  pth Power Lagrangian Method for Integer Programming , 2000, Ann. Oper. Res..

[7]  Hoang Tuy,et al.  Monotonic Optimization: Problems and Solution Approaches , 2000, SIAM J. Optim..

[8]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[9]  Bala Shetty,et al.  The Nonlinear Resource Allocation Problem , 1995, Oper. Res..

[10]  Hanan Luss,et al.  Algorithms for Separable Nonlinear Resource Allocation Problems , 1998, Oper. Res..

[11]  Duan Li,et al.  Success Guarantee of Dual Search in Integer Programming: p-th Power Lagrangian Method , 2000, J. Glob. Optim..

[12]  Duan Li,et al.  Asymptotic Strong Duality for Bounded Integer Programming: A Logarithmic-Exponential Dual Formulation , 2000, Math. Oper. Res..

[13]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[14]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[15]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[16]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[17]  J. Shapiro A Survey of Lagrangian Techniques for Discrete Optimization. , 1979 .

[18]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[19]  Xiaoling Sun,et al.  Nonlinear Integer Programming , 2006 .

[20]  Dorit S. Hochbaum,et al.  A nonlinear Knapsack problem , 1995, Oper. Res. Lett..

[21]  N. Sahinidis,et al.  Convexification and Global Optimization in Continuous And , 2002 .

[22]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[23]  Nelson Maculan,et al.  Lagrangean decomposition for integer nonlinear programming with linear constraints , 1991, Math. Program..

[24]  Daniel Ralph,et al.  An outer approximate subdifferential method for piecewise affine optimization , 2000, Math. Program..

[25]  Bala Shetty,et al.  A pegging algorithm for the nonlinear resource allocation problem , 2002, Comput. Oper. Res..

[26]  M. W. Cooper A Survey of Methods for Pure Nonlinear Integer Programming , 1981 .

[27]  Rene Victor Valqui Vidal,et al.  A Simple Method to Solve Some Simple Allocation Problems , 1987 .

[28]  Omprakash K. Gupta,et al.  Branch and Bound Experiments in Convex Nonlinear Integer Programming , 1985 .

[29]  Harvey M. Salkin,et al.  A note on a general non-linear knapsack problem , 1986 .

[30]  Frank Körner,et al.  A hybrid method for solving nonlinear knapsack problems , 1989 .

[31]  Claude Lemaréchal,et al.  A geometric study of duality gaps, with applications , 2001, Math. Program..

[32]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[33]  Jeremy F. Shapiro,et al.  A Convergent Duality Theory for Integer Programming , 1977, Oper. Res..

[34]  Ignacio E. Grossmann,et al.  Mixed-Integer Nonlinear Programming: A Survey of Algorithms and Applications , 1997 .

[35]  Mary W. Cooper,et al.  The use of dynamic programming methodology for the solution of a class of nonlinear programming problems , 1980 .

[36]  Duan Li,et al.  Optimality Condition and Branch and Bound Algorithm for Constrained Redundancy Optimization in Series Systems , 2002 .

[37]  Spyros G. Tzafestas,et al.  Optimization of system reliability: a survey of problems and techniques† , 1980 .

[38]  Harvey M. Salkin,et al.  A branch and search algorithm for a class of nonlinear knapsack problems , 1983 .

[39]  Martin E. Dyer,et al.  Solving the subproblem in the lagrangian dual of separable discrete programs with linear constraints , 1982, Math. Program..

[40]  Thomas L. Morin,et al.  A hybrid approach to discrete mathematical programming , 2015, Math. Program..

[41]  Harvey M. Salkin,et al.  A surrogate relaxation based algorithm for a general quadratic multi-dimensional knapsack problem , 1988 .

[42]  M. Fisher,et al.  Constructive Duality in Integer Programming , 1974 .

[43]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[44]  X. Zhao,et al.  New Bundle Methods for Solving Lagrangian Relaxation Dual Problems , 2002 .