A Unified Approach to Polynomially Solvable Cases of Integer "non-separable" Quadratic optimization

Abstract A recent paper by Hochbaum and Shanthikumar presented “a general-purpose algorithm for converting procedures that solve linear programming problems with … integer variables, to procedures for solving … separable [non-linear] problems”. 1 Their work showed that “convex separable optimization is not much harder than linear optimization”. In contrast, polynomial algorithms in the literature for “non-separable” integer quadratic problems use qualitatively different techniques. By linearly transforming these problems so that the objective is separable in the transformed reference frame, we provide alternative algorithms for these problems based on Hochbaum and Shanthikumar's algorithms. Inter alia we introduce a new class of polynomially solvable integer quadratic optimization problems. We also show that a slight generalization of integer linear programming having a non-separable, non-linear objective and totally unimodular constraints in NP-hard.

[1]  Ross Baldick,et al.  Coordination of Distribution System Capacitors and Regulators: An Application of Integer Quadratic Optimization , 1991 .

[2]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[3]  H. Donald Ratliff,et al.  A Graph-Theoretic Equivalence for Integer Programs , 1973, Oper. Res..

[4]  M. Padberg,et al.  Degree-two Inequalities, Clique Facets, and Biperfect Graphs , 1982 .

[5]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[6]  Jadranka Skorin-Kapov,et al.  Some proximity and sensitivity results in quadratic integer programming , 1990, Math. Program..

[7]  Felix F. Wu,et al.  Efficient integer optimization algorithms for optimal coordination of capacitors and regulators , 1990 .

[8]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[9]  J. Picard,et al.  Selected Applications of Minimum Cuts in Networks , 1982 .

[10]  Ron Shamir,et al.  A polynomial algorithm for an integer quadratic non-separable transportation problem , 1992, Math. Program..

[11]  Philip E. Gill,et al.  Numerical Linear Algebra and Optimization , 1991 .

[12]  Jadranka Skorin-Kapov,et al.  On Polynomial Solvability of the High Multiplicity Total Weighted Tardiness Problem , 1993, Discret. Appl. Math..

[13]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[14]  Cornelius T. Leondes,et al.  Analysis and control system techniques for electric power systems , 1991 .

[15]  Ross Baldick Generalization of Barahona's algorithm for cases of integer non-linear programming with box constraints , 1993, Oper. Res. Lett..

[16]  James R. Munkres,et al.  Topology; a first course , 1974 .

[17]  Tom Brylawski,et al.  Modular constructions for combinatorial geometries , 1975 .

[18]  Francisco Barahona,et al.  A solvable case of quadratic 0-1 programming , 1986, Discret. Appl. Math..

[19]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[20]  Peter L. Hammer,et al.  Some remarks on quadratic programming with 0-1 variables , 1970 .

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  Peter L. Hammer,et al.  Boolean Methods in Operations Research and Related Areas , 1968 .

[23]  Pierre Hansen,et al.  Unimodular functions , 1986, Discrete Applied Mathematics.