One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering

We analyze the security and feasibility of a protocol for quantum key distribution (QKD) in a context where only one of the two parties trusts his measurement apparatus. This scenario lies naturally between standard QKD, where both parties trust their measurement apparatuses, and device-independent QKD (DI-QKD), where neither do, and can be a natural assumption in some practical situations. We show that the requirements for obtaining secure keys are much easier to meet than for DI-QKD, which opens promising experimental opportunities. We clarify the link between the security of this one-sided DI-QKD scenario and the demonstration of quantum steering, in analogy to the link between DI-QKD and the violation of Bell inequalities.