Multiobjective discrete particle swarm optimization for community detection in dynamic networks

Tracking and identifying the dynamic patterns of evolving communities has recently drawn great attention. How to detect the community structure in a dynamic network has become a popular problem in the field of complex network and evolutionary computing. As a new concept, evolutionary clustering, is proposed to detect the process of dynamic networks under the temporal smoothness framework. Evolutionary-based clustering approaches try to maximize clustering accuracy at the current time step and minimize clustering drift at two successive time steps. But the low accuracy and the pre-setting of parameters limit their effectiveness. In order to overcome these weaknesses, in this paper, the community detection in a dynamic network is transformed into a multiobjective optimization problem. Specifically, we propose a novel decomposition strategy for multiobjective discrete particle swarm optimizationm, which balances the accuracy and the smoothness. The experimental results on synthetic and real-world datasets demonstrate the superiority of the proposed method compared with other state-of-the-art methods.