Stability of infinite dimensional control problems with pointwise state constraints

A general class of nonlinear infinite dimensional optimization problems is considered that covers semi-linear elliptic control problems with distributed control as well as boundary control. Moreover, pointwise inequality constraints on the control and the state are incorporated. The general optimization problem is perturbed by a certain class of perturbations, and we establish convergence of local solutions of the perturbed problems to a local solution of the unperturbed optimal control problem. These class of perturbations include finite element discretization as well as data perturbation such that the theory implies convergence of finite element approximation and stability w.r.t. noisy data.

[1]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..

[2]  Fredi Tröltzsch,et al.  Optimal Control of PDEs with Regularized Pointwise State Constraints , 2006, Comput. Optim. Appl..

[3]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[4]  Fredi Tröltzsch,et al.  Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems , 2008, Numerische Mathematik.

[5]  Fredi Tröltzsch,et al.  On two numerical methods for state-constrained elliptic control problems , 2007, Optim. Methods Softw..

[6]  C. Meyer Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints , 2008 .

[7]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[8]  Fredi Tröltzsch,et al.  Sufficient Second-Order Optimality Conditions for Semilinear Control Problems with Pointwise State Constraints , 2008, SIAM J. Optim..

[9]  J. Zowe,et al.  Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .

[10]  J. Douglas,et al.  The stability inLq of theL2-projection into finite element function spaces , 1974 .

[11]  E. Casas Boundary control of semilinear elliptic equations with pointwise state constraints , 1993 .

[12]  Michael Hinze,et al.  Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem , 2007, SIAM J. Numer. Anal..

[13]  David Jerison,et al.  The Neumann problem on Lipschitz domains , 1981 .

[14]  Karl Kunisch,et al.  Primal-Dual Strategy for State-Constrained Optimal Control Problems , 2002, Comput. Optim. Appl..

[15]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[16]  Olaf Steinbach,et al.  On the stability of the $L_2$ projection in fractional Sobolev spaces , 2001, Numerische Mathematik.

[17]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[18]  Andreas Günther,et al.  Hamburger Beiträge zur Angewandten Mathematik Finite element approximation of elliptic control problems with constraints on the gradient , 2007 .

[19]  Eduardo Casas,et al.  UNIFORM CONVERGENCE OF THE FEM. APPLICATIONS TO STATE CONSTRAINED CONTROL PROBLEMS , 2002 .

[20]  K. Gröger,et al.  AW1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations , 1989 .

[21]  Michael Hinze,et al.  Numerical Analysis of a Control and State Constrained Elliptic Control Problem with Piecewise Constant Control Approximations , 2008 .

[22]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[23]  Alfred H. Schatz,et al.  Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..

[24]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[25]  Jean-Pierre Raymond,et al.  Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls , 1997 .

[26]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[27]  Alfred H. Schatz,et al.  Pointwise Error Estimates and Asymptotic Error Expansion Inequalities for the Finite Element Method on Irregular Grids: Part II. Interior Estimates , 2000, SIAM J. Numer. Anal..

[28]  Michael Hinze,et al.  elliptic control problems in the presence of control and state constraints , 2007 .

[29]  Roland Griesse,et al.  Lipschitz Stability of Solutions to Some State-Constrained Elliptic Optimal Control Problems , 2006 .

[30]  E. Casas,et al.  Error estimates for the finite-element approximation of a semilinear elliptic control problem , 2002 .

[31]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[32]  Daniel Z. Zanger The Inhomogeneous Neumann Problem in Lipschitz Domains , 2000 .

[33]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .