Building and remodelling Cullin–RING E3 ubiquitin ligases

Cullin–RING E3 ubiquitin ligases (CRLs) control a plethora of biological pathways through targeted ubiquitylation of signalling proteins. These modular assemblies use substrate receptor modules to recruit specific targets. Recent efforts have focused on understanding the mechanisms that control the activity state of CRLs through dynamic alterations in CRL architecture. Central to these processes are cycles of cullin neddylation and deneddylation, as well as exchange of substrate receptor modules to re‐sculpt the CRL landscape, thereby responding to the cellular requirements to turn over distinct proteins in different contexts. This review is focused on how CRLs are dynamically controlled with an emphasis on how cullin neddylation cycles are integrated with receptor exchange.

[1]  Jai Radhakrishnan,et al.  Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities , 2012, Nature.

[2]  Zhijian J. Chen,et al.  Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP , 1999 .

[3]  M. Pagano,et al.  Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. , 2005, Molecular cell.

[4]  J. Huibregtse,et al.  Regulation of catalytic activities of HECT ubiquitin ligases. , 2007, Biochemical and biophysical research communications.

[5]  S. Elledge,et al.  Identification of SCF Ubiquitin Ligase Substrates by Global Protein Stability Profiling , 2008, Science.

[6]  J. Decaprio,et al.  Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. , 2012, Molecular cell.

[7]  Steven P. Gygi,et al.  Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics , 2010, Cell.

[8]  R. Deshaies,et al.  COP9 Signalosome A Multifunctional Regulator of SCF and Other Cullin-Based Ubiquitin Ligases , 2003, Cell.

[9]  E. Lightcap,et al.  A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  P. Pandolfi,et al.  Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence , 2010, Nature.

[11]  E. Morris,et al.  Molecular model of the human 26S proteasome. , 2012, Molecular cell.

[12]  H. Yasuda,et al.  Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability. , 2003, Biochemical and biophysical research communications.

[13]  L. Aravind,et al.  Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1 , 2002, Science.

[14]  R. Klevit,et al.  E2s: structurally economical and functionally replete. , 2011, The Biochemical journal.

[15]  R. Osman,et al.  Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail , 2008, Proceedings of the National Academy of Sciences.

[16]  Pengbo Zhou,et al.  Pathogenic Role of the CRL4 Ubiquitin Ligase in Human Disease , 2012, Front. Oncol..

[17]  K. Sugasawa,et al.  The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation , 2011, Cell.

[18]  Michal Sharon,et al.  Mechanism of auxin perception by the TIR1 ubiquitin ligase , 2007, Nature.

[19]  Anjanabha Saha,et al.  Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation , 2008, Molecular cell.

[20]  Z. Pan,et al.  Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. , 2010, Molecular cell.

[21]  Stephen J. Elledge,et al.  SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box , 1996, Cell.

[22]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[23]  Jidong Liu,et al.  NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. , 2002, Molecular cell.

[24]  M. Tyers,et al.  Suprafacial Orientation of the SCFCdc4 Dimer Accommodates Multiple Geometries for Substrate Ubiquitination , 2007, Cell.

[25]  Nurhan Özlü,et al.  The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae , 2005, Nature.

[26]  G. Rabut,et al.  CSN- and CAND1-dependent remodelling of the budding yeast SCF complex , 2013, Nature Communications.

[27]  R. Schekman,et al.  Ubiquitin-dependent regulation of COPII coat size and function , 2012, Nature.

[28]  R. Conaway,et al.  The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. , 1999, Genes & development.

[29]  R. Johnstone,et al.  Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy , 2013, Oncogene.

[30]  M. Estelle,et al.  Role of the Arabidopsis RING-H2 Protein RBX1 in RUB Modification and SCF Function Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003178. , 2002, The Plant Cell Online.

[31]  Nevan J. Krogan,et al.  Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G , 2012, PLoS pathogens.

[32]  J Wade Harper,et al.  Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. , 2007, Molecular cell.

[33]  E. Benveniste,et al.  Viral Exploitation of Host SOCS Protein Functions , 2010, Journal of Virology.

[34]  Michele Pagano,et al.  The F-box protein family , 2000, Genome Biology.

[35]  James Lowe,et al.  Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets , 2010, Nature Reviews Drug Discovery.

[36]  Lei Li,et al.  The COP9 signalosome: an alternative lid for the 26S proteasome? , 2003, Trends in cell biology.

[37]  M. Rapé,et al.  Building ubiquitin chains: E2 enzymes at work , 2009, Nature Reviews Molecular Cell Biology.

[38]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[39]  K. Früh,et al.  Viral Modulators of Cullin RING Ubiquitin Ligases: Culling the Host Defense , 2006, Science's STKE.

[40]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[41]  J. Walter,et al.  Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. , 2011, Genes & development.

[42]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[43]  M. Washburn,et al.  PARC and CUL7 form atypical cullin RING ligase complexes. , 2007, Cancer research.

[44]  Daniel C. Scott,et al.  Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation , 2008, Cell.

[45]  J. Harper,et al.  N-Terminal Acetylation Acts as an Avidity Enhancer Within an Interconnected Multiprotein Complex , 2011, Science.

[46]  R. Deshaies,et al.  Detection of Sequential Polyubiquitylation on a Millisecond Time-Scale , 2009, Nature.

[47]  M. Hannink,et al.  CAND1-Mediated Substrate Adaptor Recycling Is Required for Efficient Repression of Nrf2 by Keap1 , 2006, Molecular and Cellular Biology.

[48]  Richard D Vierstra,et al.  The cullin-RING ubiquitin-protein ligases. , 2011, Annual review of plant biology.

[49]  Jennifer Lee,et al.  Cullins and cancer. , 2010, Genes & cancer.

[50]  Peter G. Smith,et al.  The NEDD8 Conjugation Pathway and Its Relevance in Cancer Biology and Therapy. , 2010, Genes & cancer.

[51]  Brian Kuhlman,et al.  Rapid E2-E3 Assembly and Disassembly Enable Processive Ubiquitylation of Cullin-RING Ubiquitin Ligase Substrates , 2009, Cell.

[52]  Nadine H. Elowe,et al.  An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase , 2010, Nature Biotechnology.

[53]  M. Tyers,et al.  Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. , 2008, Molecular cell.

[54]  Michael J. Emanuele,et al.  Global Identification of Modular Cullin-RING Ligase Substrates , 2011, Cell.

[55]  M. Ivan,et al.  von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. , 2001, Human molecular genetics.

[56]  V. Rubio,et al.  Arabidopsis CAND1, an Unmodified CUL1-Interacting Protein, Is Involved in Multiple Developmental Pathways Controlled by Ubiquitin/Proteasome-Mediated Protein Degradation , 2004, The Plant Cell Online.

[57]  James H. Naismith,et al.  Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis , 2012, Nature.

[58]  W. Gray,et al.  Arabidopsis ETA2, an Apparent Ortholog of the Human Cullin-Interacting Protein CAND1, Is Required for Auxin Responses Mediated by the SCFTIR1 Ubiquitin Ligase , 2004, The Plant Cell Online.

[59]  S. Signoretti,et al.  The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7. , 2012, Molecular cell.

[60]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[61]  S. Gygi,et al.  Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging , 2007, Nature.

[62]  Steven M. Lewis,et al.  Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3 , 2013, eLife.

[63]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[64]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[65]  A. Shevchenko,et al.  Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome , 2001, Science.

[66]  J. Toth,et al.  CAND1 controls in vivo dynamics of the Cullin 1-RING ubiquitin ligase repertoire , 2013, Nature Communications.

[67]  Gabriel C. Lander,et al.  Complete subunit architecture of the proteasome regulatory particle , 2011, Nature.

[68]  Michele Pagano,et al.  Mechanisms and function of substrate recruitment by F-box proteins , 2013, Nature Reviews Molecular Cell Biology.

[69]  B. Schulman,et al.  A dual E3 mechanism for Rub1 ligation to Cdc53. , 2010, Molecular cell.

[70]  R. Aebersold,et al.  Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach , 2012, Proceedings of the National Academy of Sciences.

[71]  J. Harper,et al.  Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification* , 2012, Molecular & Cellular Proteomics.

[72]  P. Jeffrey,et al.  Structural Basis of UV DNA-Damage Recognition by the DDB1–DDB2 Complex , 2008, Cell.

[73]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[74]  Ping Li,et al.  Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. , 2010, Molecular cell.

[75]  Shigenori Iwai,et al.  The Molecular Basis of Crl4(Ddb2/Csa) Ubiquitin Ligase Architecture, Targeting, and Activation. , 2011 .

[76]  Kim Nasmyth,et al.  The B-type cyclin kinase inhibitor p40 SIC1 controls the G1 to S transition in S. cerevisiae , 1994, Cell.

[77]  J. Pruneda,et al.  RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. , 2014, Biochimica et biophysica acta.

[78]  H. Kawasaki,et al.  E3 ubiquitin ligase that recognizes sugar chains , 2002, Nature.

[79]  B. Schulman,et al.  A RING E3–substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases , 2011, Nature Structural &Molecular Biology.

[80]  Raymond J. Deshaies,et al.  Deconjugation of Nedd8 from Cul1 Is Directly Regulated by Skp1-F-box and Substrate, and the COP9 Signalosome Inhibits Deneddylated SCF by a Noncatalytic Mechanism , 2012, The Journal of Biological Chemistry.

[81]  A. Hershko,et al.  Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Timothy Cardozo,et al.  Systematic analysis and nomenclature of mammalian F-box proteins. , 2004, Genes & development.

[83]  Mike Tyers,et al.  Cdc53 Targets Phosphorylated G1 Cyclins for Degradation by the Ubiquitin Proteolytic Pathway , 1996, Cell.

[84]  S. Jentsch,et al.  A novel protein modification pathway related to the ubiquitin system , 1998, The EMBO journal.

[85]  R. Klevit,et al.  Following Ariadne's thread: a new perspective on RBR ubiquitin ligases , 2012, BMC Biology.

[86]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[87]  M. Roussel,et al.  E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. , 2009, Molecular cell.

[88]  H. Kawasaki,et al.  A new NEDD8-ligating system for cullin-4A. , 1998, Genes & development.

[89]  L. Dick,et al.  Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. , 2010, Drug discovery today.

[90]  Matthias Peter,et al.  Structural basis for a reciprocal regulation between SCF and CSN. , 2012, Cell reports.

[91]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[92]  Peter G. Smith,et al.  Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity , 2011, Molecular biology of the cell.

[93]  Raymond J. Deshaies,et al.  Mechanism of Lysine 48-Linked Ubiquitin-Chain Synthesis by the Cullin-RING Ubiquitin-Ligase Complex SCF-Cdc34 , 2005, Cell.

[94]  Jidong Liu,et al.  Structure of the Cand1-Cul1-Roc1 Complex Reveals Regulatory Mechanisms for the Assembly of the Multisubunit Cullin-Dependent Ubiquitin Ligases , 2004, Cell.

[95]  Mike Tyers,et al.  An Allosteric Inhibitor of the Human Cdc34 Ubiquitin-Conjugating Enzyme , 2011, Cell.

[96]  I. Sumara,et al.  The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes , 2009, Proceedings of the National Academy of Sciences.

[97]  R. Deshaies,et al.  A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK Inhibitor Sic1p , 1997, Cell.

[98]  D. Noh,et al.  EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. , 2012, Molecular cell.

[99]  A. Ciechanover,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[100]  Hui Zhang,et al.  CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. , 2002, Molecular cell.

[101]  Edward T Kipreos,et al.  cul-1 Is Required for Cell Cycle Exit in C. elegans and Identifies a Novel Gene Family , 1996, Cell.

[102]  Y. Li,et al.  Chemical genetics of TOR identifies an SCF family E3 ubiquitin ligase inhibitor , 2010, Nature Biotechnology.

[103]  J. Mulliken,et al.  Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). , 2002, American journal of human genetics.

[104]  Michael J. Sweredoski,et al.  Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins , 2013, Cell.

[105]  J. Harper,et al.  Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. , 2013, Structure.

[106]  N. Zheng,et al.  Structural regulation of cullin-RING ubiquitin ligase complexes. , 2011, Current opinion in structural biology.

[107]  M. MacCoss,et al.  Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery , 2006, Nature.

[108]  E. Yeh,et al.  Characterization of NEDD8, a Developmentally Down-regulated Ubiquitin-like Protein* , 1997, The Journal of Biological Chemistry.

[109]  Danny T. Huang,et al.  BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer , 2012, Nature Structural &Molecular Biology.

[110]  Bhuvanesh Singh,et al.  SCCRO (DCUN1D1) Is an Essential Component of the E3 Complex for Neddylation* , 2008, Journal of Biological Chemistry.

[111]  Toshihiko Ogura,et al.  Identification of a Primary Target of Thalidomide Teratogenicity , 2010, Science.

[112]  A. Ciechanover,et al.  The NEDD8 Pathway Is Essential for SCFβ-TrCP-mediated Ubiquitination and Processing of the NF-κB Precursor p105* , 2002, The Journal of Biological Chemistry.

[113]  Bhuvanesh Singh,et al.  SCCRO (DCUN1D1) Promotes Nuclear Translocation and Assembly of the Neddylation E3 Complex* , 2011, The Journal of Biological Chemistry.

[114]  Youngjo Kim,et al.  C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues. , 2010, Developmental biology.

[115]  B. Schulman,et al.  Twists and turns in ubiquitin‐like protein conjugation cascades , 2011, Protein science : a publication of the Protein Society.

[116]  D. C. Dias,et al.  Nedd8 on cullin: building an expressway to protein destruction , 2004, Oncogene.

[117]  W. Gray,et al.  Genetic analysis of CAND1–CUL1 interactions in Arabidopsis supports a role for CAND1-mediated cycling of the SCFTIR1 complex , 2008, Proceedings of the National Academy of Sciences.

[118]  J. Wade Harper,et al.  Drug discovery in the ubiquitin–proteasome system , 2006, Nature Reviews Drug Discovery.

[119]  Andrea C. Carrano,et al.  Identification of the Ubiquitin Carrier Proteins, E2s, Involved in Signal-induced Conjugation and Subsequent Degradation of IκBα* , 1999, The Journal of Biological Chemistry.

[120]  V. Chau,et al.  Nedd8 Modification of Cul-1 Activates SCFβTrCP-Dependent Ubiquitination of IκBα , 2000, Molecular and Cellular Biology.

[121]  E. Lightcap,et al.  Quantitative Proteomic Analysis of Cellular Protein Modulation upon Inhibition of the NEDD8-Activating Enzyme by MLN4924 , 2011, Molecular & Cellular Proteomics.

[122]  Chunshui Zhou,et al.  The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? , 2003, Nature Cell Biology.

[123]  Michael J. Sweredoski,et al.  The Steady-State Repertoire of Human SCF Ubiquitin Ligase Complexes Does Not Require Ongoing Nedd8 Conjugation* , 2010, Molecular & Cellular Proteomics.

[124]  M. Goebl,et al.  Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. , 1998, Genes & development.

[125]  B. Clurman,et al.  FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation , 2008, Nature Reviews Cancer.

[126]  K. Hofmann,et al.  F-box-directed CRL complex assembly and regulation by the CSN and CAND1. , 2009, Molecular cell.

[127]  I. Sumara,et al.  The emerging family of CULLIN3‐RING ubiquitin ligases (CRL3s): cellular functions and disease implications , 2013, The EMBO journal.

[128]  Keiichi I Nakayama,et al.  VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. , 2004, Genes & development.