Intelligent interpolation by Monte Carlo machine learning

Acquisition technology advances, as well as the exploration of geologically complex areas are pushing the quantity of data to be analyzed into the ‘big data’ era. In our related work, it was shown that a machine learning method based on support vector regression (SVR) for seismic data intelligent interpolation can fully utilize large data as training data, and can eliminate certain pre-assumptions in the existing methods, such as linear events, sparsity or low rank. However, immense training sets not only encompass with high redundancy but also result in considerable computational costs, especially for high- dimensional seismic data. In this paper, we propose a criterion based on Monte Carlo for the intelligent reduction of training sets. For seismic data, pixel values in each local patch can be regarded as a set of statistical data and a variance value for the patch can be computed. A high variance means that there are events centered its corresponding patch or the pixel values in the patch range obvious...

[1]  Yangkang Chen,et al.  Simultaneous Denoising and Interpolation of 3-D Seismic Data via Damped Data-Driven Optimal Singular Value Shrinkage , 2017, IEEE Geoscience and Remote Sensing Letters.

[2]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[3]  Martin Stoll,et al.  A Krylov–Schur approach to the truncated SVD , 2012 .

[4]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[5]  Joshua Ronen,et al.  Wave‐equation trace interpolation , 1987 .

[6]  Lynn Burroughs,et al.  Rank-Reduction-Based Trace Interpolation , 2010 .

[7]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[8]  Weilin Huang,et al.  Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method , 2016 .

[9]  Thomas Reinartz,et al.  A Unifying View on Instance Selection , 2002, Data Mining and Knowledge Discovery.

[10]  Sergey Fomel,et al.  Seismic reflection data interpolation with differential offset and shot continuation , 2003 .

[11]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[12]  Jong-Se Lim,et al.  Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea , 2005 .

[13]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[14]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[15]  Mauricio D. Sacchi,et al.  Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data , 2010 .

[16]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[17]  Jianwei Ma,et al.  Three-dimensional irregular seismic data reconstruction via low-rank matrix completion , 2013 .

[18]  Kunle Olukotun,et al.  Map-Reduce for Machine Learning on Multicore , 2006, NIPS.

[19]  Mauricio D. Sacchi,et al.  Robust reduced-rank filtering for erratic seismic noise attenuation , 2015 .

[20]  Stanley Osher,et al.  A Low Patch-Rank Interpretation of Texture , 2013, SIAM J. Imaging Sci..

[21]  Hassan Mansour,et al.  Efficient matrix completion for seismic data reconstruction , 2015 .

[22]  Chiyuan Zhang,et al.  Machine-learning Based Automated Fault Detection in Seismic Traces , 2014 .

[23]  B. Recht,et al.  Fast Methods for Denoising Matrix Completion Formulations, with Applications to Robust Seismic Data Interpolation , 2013, SIAM J. Sci. Comput..

[24]  N. Kreimer,et al.  Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction , 2013 .

[25]  Daniel Trad,et al.  Five-dimensional interpolation: Recovering from acquisition constraints , 2009 .

[26]  Mauricio D. Sacchi,et al.  Multidimensional de-aliased Cadzow reconstruction of seismic records , 2013 .

[27]  Joseph M. Hellerstein,et al.  GraphLab: A New Framework For Parallel Machine Learning , 2010, UAI.

[28]  Paul S. Bradley,et al.  Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.

[29]  Mauricio D. Sacchi,et al.  A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions , 2013 .

[30]  Mauricio D. Sacchi,et al.  Interpolation and denoising of high-dimensional seismic data by learning a tight frame , 2015 .

[31]  G. Plonka,et al.  Seismic data interpolation and denoising by learning a tensor tight frame , 2017 .

[32]  Stephen K. Chiu,et al.  Multidimensional interpolation using a model-constrained minimum weighted norm interpolation , 2014 .

[33]  Yu Zhang,et al.  Antileakage Fourier transform for seismic data regularization in higher dimensions , 2010 .

[34]  Stanley Osher,et al.  Monte Carlo data-driven tight frame for seismic data recovery , 2016 .

[35]  Nadia Kreimer,et al.  A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation , 2012 .

[36]  Tarek Helmy,et al.  Hybrid computational models for the characterization of oil and gas reservoirs , 2010, Expert Syst. Appl..

[37]  Mauricio D. Sacchi,et al.  Multistep autoregressive reconstruction of seismic records , 2007 .

[38]  Tomaso Poggio,et al.  Automated fault detection without seismic processing , 2017 .

[39]  Mauricio D. Sacchi,et al.  A New 5D Seismic Reconstruction Method Based on a Parallel Square Matrix Factorization Algorithm , 2015 .

[40]  Charles L. Karr,et al.  Determination of lithology from well logs using a neural network , 1992 .

[41]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2016 .

[42]  Jianwei Ma,et al.  A fast rank-reduction algorithm for three-dimensional seismic data interpolation , 2016 .

[43]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[44]  Stanley H. Chan,et al.  Monte Carlo Non-Local Means: Random Sampling for Large-Scale Image Filtering , 2013, IEEE Transactions on Image Processing.

[45]  S. Osher,et al.  Seismic data reconstruction via matrix completion , 2013 .

[46]  Mauricio D. Sacchi,et al.  Minimum weighted norm interpolation of seismic records , 2004 .

[47]  Jianwei Ma,et al.  Seismic data restoration via data-driven tight frame , 2014 .

[48]  Jianwei Ma,et al.  What can machine learning do for seismic data processing? An interpolation application , 2017 .

[49]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .