Effect on Kerr comb generation in a clockwise and counter-clockwise mode coupled microcavity

We study the impact of inherent mode coupling between clockwise (CW) and counter-clockwise (CCW) modes on Kerr comb generation in a small whispering-gallery mode microcavity. Our numerical analysis using a coupled Lugiato-Lefever equation reveals the range of the coupling strength in which a soliton pulse can be obtained in the CW direction. It also showed that CCW comb power depends on the coupling strength between the CW and CCW modes. In addition to the simulation, we conducted an experiment to confirm that the power ratio between the CW and CCW comb modes depends on the coupling strength, and the experimental results agree well with the simulation results. This study helps us to understand the relationship between CW and CCW mode coupling and Kerr comb generation, and the effect on soliton formation.

[1]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[2]  C. Menyuk,et al.  Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators , 2012, 1210.8210.

[3]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[4]  Shun Fujii,et al.  Transverse mode interaction via stimulated Raman scattering comb in a silica microcavity. , 2017, Optics express.

[5]  Shun Fujii,et al.  Third-harmonic blue light generation from Kerr clustered combs and dispersive waves. , 2017, Optics letters.

[6]  Vladimir S. Ilchenko,et al.  Hard and Soft Excitation Regimes of Kerr Frequency Combs , 2011, 1111.3916.

[7]  K. Vahala,et al.  Modal coupling in traveling-wave resonators. , 2002, Optics letters.

[8]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[9]  Michael L. Gorodetsky,et al.  Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators , 2017 .

[10]  G. Zumofen,et al.  Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. , 2007, Physical review letters.

[11]  Takasumi Tanabe,et al.  Hysteresis behavior of Kerr frequency comb generation in a high-quality-factor whispering-gallery-mode microcavity , 2016 .

[12]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[13]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[14]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[15]  T. Tanabe,et al.  Observation of energy oscillation between strongly-coupled counter-propagating ultra-high Q whispering gallery modes. , 2015, Optics express.

[16]  Andrew M. Weiner,et al.  Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb , 2011, CLEO 2011.

[17]  A. Matsko,et al.  Mode-locked Kerr frequency combs. , 2011, Optics letters.

[18]  F. Oručević,et al.  Excitation mapping of whispering gallery modes in silica microcavities. , 2009, Optics letters.

[19]  K. Vahala,et al.  Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity. , 2009, Physical review letters.

[20]  Nan Yu,et al.  Impact of cavity spectrum on span in microresonator frequency combs. , 2013, Optics express.

[21]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[22]  A Yariv,et al.  Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing. , 1977, Optics letters.

[23]  Jian Wang,et al.  Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation , 2014 .

[24]  Jian Wang,et al.  Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. , 2012, Optics express.

[25]  Lan Yang,et al.  Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. , 2010, Optics express.

[26]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[27]  Lute Maleki,et al.  Generation of optical frequency combs with a CaF2 resonator. , 2009, Optics letters.

[28]  Scott A. Diddams,et al.  Laser-machined ultra-high-Q microrod resonators for nonlinear optics , 2013 .

[29]  Xinbai Li,et al.  Single-mode dispersive waves and soliton microcomb dynamics , 2016, Nature Communications.

[30]  Yanne K Chembo,et al.  Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators. , 2016, Optics express.

[31]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[32]  A. Matsko,et al.  Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator. , 2011, Optics letters.

[33]  Scott A. Diddams,et al.  Mechanical Control of a Microrod-Resonator Optical Frequency Comb , 2012, 1205.4272.

[34]  Xiaoxiao Xue,et al.  Normal‐dispersion microcombs enabled by controllable mode interactions , 2015, 1503.06142.

[35]  R. Holzwarth,et al.  Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators , 2013, Nature Communications.

[36]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[37]  M. Lipson,et al.  Strong polarization mode coupling in microresonators. , 2014, Optics letters.

[38]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[39]  C. Paré,et al.  Transverse modulational instabilities for counterpropagating beams in Kerr media. , 1988, Optics letters.

[40]  M. Lauermann,et al.  Coherent terabit communications with microresonator Kerr frequency combs , 2013, Nature Photonics.

[41]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[42]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[43]  Kerry J. Vahala,et al.  Microresonator Soliton Dual-Comb Spectroscopy , 2016 .

[44]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[45]  M. Lipson,et al.  Dynamics of mode-coupling-assisted microresonator frequency combs , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[46]  Vladimir S. Ilchenko,et al.  Rayleigh scattering in high-Q microspheres , 2000 .

[47]  Yoshitomo Okawachi,et al.  Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. , 2009, Optics express.

[48]  K. Vahala,et al.  Counter-propagating solitons in microresonators , 2017, Nature Photonics.

[49]  A. Matsko,et al.  Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. , 2015, Physical review letters.

[50]  Jian Wang,et al.  Mode-locked dark pulse Kerr combs in normal-dispersion microresonators , 2015, Nature Photonics.

[51]  A. Matsko,et al.  Kerr frequency comb generation in overmoded resonators. , 2012, Optics express.

[52]  S. L. Stebbings,et al.  Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator , 2016, Scientific Reports.

[53]  D. Weiss,et al.  Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. , 1995, Optics letters.

[54]  Daniele Modotto,et al.  Dynamics of the modulational instability in microresonator frequency combs , 2013 .

[55]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.