Global stabilization of spherical orientation by synergistic hybrid feedback with application to reduced-attitude tracking for rigid bodies

In this paper, we propose a hybrid feedback based on a “synergistic” potential function that achieves global asymptotic stabilization of a desired orientation on the n-sphere with a nominal robustness to measurement disturbances, a task that is not possible by classical feedback–be it smooth, nonsmooth, periodic, or any combination thereof–due to the topological structure of the sphere. We extend this basic result to a tracking controller for the reduced attitude–or pointing direction–of a rigid body and provide a method to remove jumps in the controlled torque by backstepping. The proposed hybrid feedback is compared with a similar smooth feedback in simulation, where it is illustrated that the hybrid feedback overcomes performance limitations inherent to the smooth feedback. We provide two examples of a synergistic potential function–one defined on a general sphere and the other on the unit circle.

[1]  Andrew R. Teel,et al.  Global asymptotic stabilization of the inverted equilibrium manifold of the 3-D pendulum by hybrid feedback , 2010, 49th IEEE Conference on Decision and Control (CDC).

[2]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[3]  Karl Johan Åström,et al.  A Stabilizing Switching Scheme for Multi Controller Systems , 1996 .

[4]  Panagiotis Tsiotras,et al.  Spin-axis stabilization of symmetric spacecraft with two control torques , 1994 .

[5]  Johan Eker,et al.  Hybrid control of a double tank system , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[6]  Ricardo G. Sanfelice,et al.  Quaternion-Based Hybrid Control for Robust Global Attitude Tracking , 2011, IEEE Transactions on Automatic Control.

[7]  S. Bhat,et al.  A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon , 2000 .

[8]  D. Koditschek The Application of Total Energy as a Lyapunov Function for Mechanical Control Systems , 1989 .

[9]  Andrew R. Teel,et al.  Hybrid control of rigid-body attitude with synergistic potential functions , 2011, Proceedings of the 2011 American Control Conference.

[10]  N. McClamroch,et al.  Rigid-Body Attitude Control , 2011, IEEE Control Systems.

[11]  Ricardo G. Sanfelice,et al.  Invariance Principles for Hybrid Systems With Connections to Detectability and Asymptotic Stability , 2007, IEEE Transactions on Automatic Control.

[12]  E. Ryan On Brockett's Condition for Smooth Stabilizability and its Necessity in a Context of Nonsmooth Feedback , 1994 .

[13]  David Angeli Almost global stabilization of the inverted pendulum via continuous state feedback , 2001, Autom..

[14]  Alexander Leonessa,et al.  Nonlinear system stabilization via hierarchical switching control , 2001, IEEE Trans. Autom. Control..

[15]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[16]  Taeyoung Lee,et al.  Nonlinear Dynamics of the 3D Pendulum , 2011, J. Nonlinear Sci..

[17]  Steven L. Waslander,et al.  The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC) , 2004, The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576).

[18]  Robert M. Sanner,et al.  A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise , 2003, IEEE Trans. Autom. Control..

[19]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[20]  Christopher G. Mayhew,et al.  Hybrid control of planar rotations , 2010, Proceedings of the 2010 American Control Conference.

[21]  Darren M. Dawson,et al.  Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements , 2001 .

[22]  R. Fuentes,et al.  Global analysis of the double-gimbal mechanism , 2008, IEEE Control Systems.

[23]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[24]  Rob Dekkers,et al.  Control of Robot Manipulators in Joint Space , 2005 .

[25]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[26]  Andrew R. Teel,et al.  On the topological structure of attraction basins for differential inclusions , 2011, Syst. Control. Lett..

[27]  V. Kapila,et al.  A quaternion-based adaptive attitude tracking controller without velocity measurements , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[29]  Frank L. Lewis,et al.  Hybrid control for a class of underactuated mechanical systems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[30]  Andrew R. Teel,et al.  Hybrid control of spherical orientation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[31]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[32]  N. Harris McClamroch,et al.  Asymptotic Stabilization of the Inverted Equilibrium Manifold of the 3-D Pendulum Using Non-Smooth Feedback , 2009, IEEE Transactions on Automatic Control.

[33]  Richard M. Murray,et al.  Tracking for fully actuated mechanical systems: a geometric framework , 1999, Autom..

[34]  Andrew R. Teel,et al.  Synergistic potential functions for hybrid control of rigid-body attitude , 2011, Proceedings of the 2011 American Control Conference.

[35]  Ricardo G. Sanfelice,et al.  Further results on synergistic Lyapunov functions and hybrid feedback design through backstepping , 2011, IEEE Conference on Decision and Control and European Control Conference.

[36]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[37]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[38]  Christopher I. Byrnes,et al.  On Brockett's Necessary Condition for Stabilizability and the Topology of Liapunov Functions on R$^n$ , 2008, Commun. Inf. Syst..

[39]  Pierluigi Pisu,et al.  Attitude Tracking With Adaptive Rejection of Rate Gyro Disturbances , 2007, IEEE Transactions on Automatic Control.

[40]  Katsuhisa Furuta,et al.  Swinging up a pendulum by energy control , 1996, Autom..

[41]  Ricardo G. Sanfelice,et al.  Synergistic Lyapunov functions and backstepping hybrid feedbacks , 2011, Proceedings of the 2011 American Control Conference.

[42]  Taeyoung Lee,et al.  Geometric tracking control of a quadrotor UAV on SE(3) , 2010, 49th IEEE Conference on Decision and Control (CDC).

[43]  Ranjan Mukherjee,et al.  Exponential stabilization of the rolling sphere , 2004, Autom..

[44]  Abdelhamid Tayebi,et al.  Unit Quaternion-Based Output Feedback for the Attitude Tracking Problem , 2008, IEEE Transactions on Automatic Control.

[45]  João Pedro Hespanha,et al.  Scale-Independent Hysteresis Switching , 1999, HSCC.

[46]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[47]  D. Bernstein,et al.  Inertia-Free Spacecraft Attitude Tracking with Disturbance Rejection and Almost Global Stabilization , 2009 .

[48]  Evangelos Papadopoulos,et al.  Planar trajectory planning and tracking control design for underactuated AUVs , 2007 .

[49]  P. Olver Nonlinear Systems , 2013 .

[50]  F. Wilson The structure of the level surfaces of a Lyapunov function , 1967 .

[51]  Dennis S. Bernstein,et al.  Stabilization of a 3D axially symmetric pendulum , 2008, Autom..

[52]  Dennis S. Bernstein,et al.  Asymptotic Smooth Stabilization of the Inverted 3-D Pendulum , 2009, IEEE Transactions on Automatic Control.

[53]  A. Morse,et al.  Applications of hysteresis switching in parameter adaptive control , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[54]  Olav Egeland,et al.  Swinging up the spherical pendulum via stabilization of its first integrals , 2004, Autom..

[55]  Ricardo G. Sanfelice,et al.  Supervising a family of hybrid controllers for robust global asymptotic stabilization , 2008, 2008 47th IEEE Conference on Decision and Control.

[56]  Christopher I. Byrnes,et al.  On the attitude stabilization of rigid spacecraft , 1991, Autom..

[57]  J. Milnor,et al.  On the parallelizability of the spheres , 1958 .