Uncertain programming model for multi-item solid transportation problem

In this paper, an uncertain Multi-objective Multi-item Solid Transportation Problem (MMSTP) based on uncertainty theory is presented. In the model, transportation costs, supplies, demands and conveyances parameters are taken to be uncertain parameters. There are restrictions on some items and conveyances of the model. Therefore, some particular items cannot be transported by some exceptional conveyances. Using the advantage of uncertainty theory, the MMSTP is first converted into an equivalent deterministic MMSTP. By applying convex combination method and minimizing distance function method, the deterministic MMSTP is reduced into single objective programming problems. Thus, both single objective programming problems are solved using Maple 18.02 optimization toolbox. Finally, a numerical example is given to illustrate the performance of the models.

[1]  Baoding Liu,et al.  Uncertain Multiobjective Programming and Uncertain Goal Programming , 2015 .

[2]  Baoding Liu,et al.  Theory and Practice of Uncertain Programming , 2003, Studies in Fuzziness and Soft Computing.

[3]  Changchun Liu,et al.  Study of weak solutions for a higher order nonlinear degenerate parabolic equation , 2016 .

[4]  Oscar Castillo,et al.  A review on interval type-2 fuzzy logic applications in intelligent control , 2014, Inf. Sci..

[5]  Xujian Huang,et al.  The numerical radius of Lipschitz operators on Banach spaces , 2012 .

[6]  Xu Zhou,et al.  Effective algorithms of the Moore-Penrose inverse matrices for extreme learning machine , 2015, Intell. Data Anal..

[7]  Junzo Watada,et al.  Capacitated two-stage facility location problem with fuzzy costs and demands , 2013, Int. J. Mach. Learn. Cybern..

[8]  M. P. Biswal,et al.  Fuzzy programming approach to multiobjective solid transportation problem , 1993 .

[9]  Yu-Lin He,et al.  Fuzziness based semi-supervised learning approach for intrusion detection system , 2017, Inf. Sci..

[10]  Hale Gonce Kocken,et al.  A Solution Proposal To Indefinite Quadratic Interval Transportation Problem , 2013 .

[11]  Yu-Lin He,et al.  Fuzzy nonlinear regression analysis using a random weight network , 2016, Inf. Sci..

[12]  Baoding Liu Why is There a Need for Uncertainty Theory , 2012 .

[13]  Uttam Kumar Bera,et al.  A Bi-Objective Solid Transportation Model Under Uncertain Environment , 2015 .

[14]  Xiaosheng Wang,et al.  Method of moments for estimating uncertainty distributions , 2014 .

[15]  Yuan Gao,et al.  Uncertain inference control for balancing an inverted pendulum , 2012, Fuzzy Optim. Decis. Mak..

[16]  Manoranjan Maiti,et al.  Fully fuzzy fixed charge multi-item solid transportation problem , 2015, Appl. Soft Comput..

[17]  Lixing Yang,et al.  Analysis of order statistics of uncertain variables , 2015 .

[18]  Baoding Liu,et al.  Uncertainty Theory - A Branch of Mathematics for Modeling Human Uncertainty , 2011, Studies in Computational Intelligence.

[19]  Hale Gonce Kocken,et al.  A simple parametric method to generate all optimal solutions of fuzzy solid transportation problem , 2016 .

[20]  Yuhan Liu,et al.  Expected Value of Function of Uncertain Variables , 2010 .

[21]  Fernando Jiménez,et al.  Uncertain solid transportation problems , 1998, Fuzzy Sets Syst..

[22]  Baoding Liu,et al.  Uncertainty Theory - A Branch of Mathematics for Modeling Human Uncertainty , 2011, Studies in Computational Intelligence.

[23]  S. Kar,et al.  Multi-objective multi-item solid transportation problem in fuzzy environment , 2013 .

[24]  Xizhao Wang,et al.  Fuzziness based sample categorization for classifier performance improvement , 2015, J. Intell. Fuzzy Syst..

[25]  Wei-Yin Chen,et al.  Stochasticity and noise-induced transition of genetic toggle switch , 2014 .

[26]  Pei Liu,et al.  Reduction methods of type-2 uncertain variables and their applications to solid transportation problem , 2015, Inf. Sci..

[27]  Nuran Güzel,et al.  A Fuzzy Set-Based Approach to Multi-objective Multi-item Solid Transportation Problem Under Uncertainty , 2016, Int. J. Fuzzy Syst..

[28]  Jian Zhou,et al.  An interactive satisficing approach for multi-objective optimization with uncertain parameters , 2017, J. Intell. Manuf..

[29]  Harish Garg,et al.  Generalized intuitionistic fuzzy multiplicative interactive geometric operators and their application to multiple criteria decision making , 2015, International Journal of Machine Learning and Cybernetics.

[30]  Baoding Liu,et al.  Uncertain multilevel programming: Algorithm and applications , 2015, Comput. Ind. Eng..

[31]  Baoding Liu Some Research Problems in Uncertainty Theory , 2009 .

[32]  K. B. Haley,et al.  New Methods in Mathematical Programming---The Solid Transportation Problem , 1962 .

[33]  Xizhao Wang,et al.  Learning from big data with uncertainty - editorial , 2015, J. Intell. Fuzzy Syst..

[34]  Guangdong Tian,et al.  An Uncertain Random Programming Model for Project Scheduling Problem , 2015, Int. J. Intell. Syst..

[35]  José L. Verdegay,et al.  Solving fuzzy solid transportation problems by an evolutionary algorithm based parametric approach , 1999, Eur. J. Oper. Res..

[36]  Fan Yang,et al.  Multi-objective optimization in uncertain random environments , 2014, Fuzzy Optim. Decis. Mak..

[37]  Baoding Liu Uncertain Risk Analysis and Uncertain Reliability Analysis , 2010 .

[38]  Masatoshi Sakawa,et al.  Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity , 2012, Int. J. Mach. Learn. Cybern..

[39]  Samarjit Kar,et al.  Multi-item solid transportation problem with type-2 fuzzy parameters , 2015, Appl. Soft Comput..