Nck- and N-WASP-dependent actin-based motility is conserved in divergent vertebrate poxviruses.

[1]  Victoria A. Higman,et al.  Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex , 2009, Proceedings of the National Academy of Sciences.

[2]  A. Kazlauskas,et al.  Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspFU during pedestal formation , 2009, Proceedings of the National Academy of Sciences.

[3]  F. Gunzer,et al.  IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. , 2009, Cell host & microbe.

[4]  Ina Weisswange,et al.  The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility , 2009, Nature.

[5]  L. Collinson,et al.  An E2–F12 complex is required for intracellular enveloped virus morphogenesis during vaccinia infection , 2009, Cellular Microbiology.

[6]  B. Ward,et al.  Vaccinia Virus Protein F12 Associates with Intracellular Enveloped Virions through an Interaction with A36 , 2008, Journal of Virology.

[7]  C. Brautigam,et al.  Hierarchical regulation of WASP/WAVE proteins. , 2008, Molecular cell.

[8]  Geoffrey L. Smith,et al.  Vaccinia virus morphogenesis and dissemination. , 2008, Trends in microbiology.

[9]  Hui-Chun Cheng,et al.  Repetitive N-WASP–Binding Elements of the Enterohemorrhagic Escherichia coli Effector EspFU Synergistically Activate Actin Assembly , 2008, PLoS pathogens.

[10]  Wendell A. Lim,et al.  The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency , 2008, Nature.

[11]  Hui-Chun Cheng,et al.  Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU , 2008, Nature.

[12]  P. Cossart,et al.  Listeria comet tails: the actin-based motility machinery at work. , 2008, Trends in cell biology.

[13]  Thamara K. Dayarathna,et al.  Phosphorylated YDXV Motifs and Nck SH2/SH3 Adaptors Act Cooperatively To Induce Actin Reorganization , 2008, Molecular and Cellular Biology.

[14]  M. Goldberg,et al.  Bacterial actin assembly requires toca-1 to relieve N-wasp autoinhibition. , 2008, Cell host & microbe.

[15]  M. Way,et al.  F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. , 2007, Cell host & microbe.

[16]  T. Newsome,et al.  The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. , 2007, Cell host & microbe.

[17]  Yu Ohsugi,et al.  The novel cargo Alcadein induces vesicle association of kinesin‐1 motor components and activates axonal transport , 2007, The EMBO journal.

[18]  E. Brown,et al.  Actin‐based motility of intracellular bacteria, and polarized surface distribution of the bacterial effector molecules , 2006, Journal of cellular physiology.

[19]  P. Sonderegger,et al.  Calsyntenin-1 docks vesicular cargo to kinesin-1. , 2006, Molecular biology of the cell.

[20]  F. J. Dein,et al.  Genomic characterization of a novel poxvirus contributing to the decline of the red squirrel (Sciurus vulgaris) in the UK. , 2006, The Journal of general virology.

[21]  Jean-Luc Duteyrat,et al.  Ultrastructural study of myxoma virus morphogenesis , 2006, Archives of Virology.

[22]  J. Leong,et al.  Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling , 2006, Nature Reviews Microbiology.

[23]  F. Frischknecht,et al.  Abl collaborates with Src family kinases to stimulate actin‐based motility of vaccinia virus , 2006, Cellular microbiology.

[24]  Joanne M Stevens,et al.  Actin-dependent movement of bacterial pathogens , 2006, Nature Reviews Microbiology.

[25]  M. Feinberg,et al.  Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases , 2005, Nature Medicine.

[26]  T. Newsome,et al.  Src Mediates a Switch from Microtubule- to Actin-Based Motility of Vaccinia Virus , 2004, Science.

[27]  M. Law,et al.  Yaba-like disease virus protein Y144R, a member of the complement control protein family, is present on enveloped virions that are associated with virus-induced actin tails. , 2004, The Journal of general virology.

[28]  B. Moss,et al.  Vaccinia Virus A36R Membrane Protein Provides a Direct Link between Intracellular Enveloped Virions and the Microtubule Motor Kinesin , 2004, Journal of Virology.

[29]  G. McFadden,et al.  Complete Genomic Sequence and Comparative Analysis ofthe Tumorigenic Poxvirus Yaba Monkey TumorVirus , 2003, Journal of Virology.

[30]  Michael B. Yaffe,et al.  Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs , 2003, Nucleic Acids Res..

[31]  T. Pawson,et al.  The Murine Nck SH2/SH3 Adaptors Are Important for the Development of Mesoderm-Derived Embryonic Structures and for Regulating the Cellular Actin Network , 2003, Molecular and Cellular Biology.

[32]  Rachel L. Roper,et al.  Poxvirus Orthologous Clusters: toward Defining the Minimum Essential Poxvirus Genome , 2003, Journal of Virology.

[33]  B. Moss,et al.  Mapping and Functional Analysis of Interaction Sites within the Cytoplasmic Domains of the Vaccinia Virus A33R and A36R Envelope Proteins , 2003, Journal of Virology.

[34]  M. Law,et al.  The formation and function of extracellular enveloped vaccinia virus. , 2002, The Journal of general virology.

[35]  M. Way,et al.  The WH1 and EVH1 Domains of WASP and Ena/VASP Family Members Bind Distinct Sequence Motifs , 2002, Current Biology.

[36]  V. Moreau,et al.  Grb2 and Nck Act Cooperatively to Promote Actin-Based Motility of Vaccinia Virus , 2002, Current Biology.

[37]  F. Osorio,et al.  The Genome of Swinepox Virus , 2002, Journal of Virology.

[38]  B. Moss,et al.  Vaccinia Virus Intracellular Movement Is Associated with Microtubules and Independent of Actin Tails , 2001, Journal of Virology.

[39]  T. Zimmermann,et al.  Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus , 2001, Nature Cell Biology.

[40]  B. Moss,et al.  Yaba-Like Disease Virus: an Alternative Replicating Poxvirus Vector for Cancer Gene Therapy , 2001, Journal of Virology.

[41]  Sheila M. Thomas,et al.  N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility , 2001, Nature Cell Biology.

[42]  D. Rock,et al.  Genome of Lumpy Skin Disease Virus , 2001, Journal of Virology.

[43]  M. Law,et al.  Vaccinia virus utilizes microtubules for movement to the cell surface , 2001, The Journal of cell biology.

[44]  Geoffrey L. Smith,et al.  The genome sequence of Yaba-like disease virus, a yatapoxvirus. , 2001, Virology.

[45]  B. Moss,et al.  The Vaccinia Virus A33R Protein Provides a Chaperone Function for Viral Membrane Localization and Tyrosine Phosphorylation of the A36R Protein , 2001, Journal of Virology.

[46]  F. Frischknecht,et al.  A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization , 2000, Nature Cell Biology.

[47]  Henriette van Eijl,et al.  The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. , 2000, Virology.

[48]  G. McFadden,et al.  The complete DNA sequence of myxoma virus. , 1999, Virology.

[49]  G. McFadden,et al.  The complete genome sequence of shope (rabbit) fibroma virus. , 1999, Virology.

[50]  Giulio Superti-Furga,et al.  Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling , 1999, Nature.

[51]  F. Frischknecht,et al.  Interactions between Vaccinia Virus IEV Membrane Proteins and Their Roles in IEV Assembly and Actin Tail Formation , 1999, Journal of Virology.

[52]  M. Way,et al.  Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. , 1998, The Journal of general virology.

[53]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Moss,et al.  Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. , 1998, Virology.

[55]  Timothy J. Mitchison,et al.  Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes , 1997, Nature.

[56]  E. Koonin,et al.  Genome Sequence of a Human Tumorigenic Poxvirus: Prediction of Specific Host Response-Evasion Genes , 1996, Science.

[57]  G. Griffiths,et al.  Vaccinia virus: a model system for actin-membrane interactions. , 1996, Journal of cell science.

[58]  P. Cossart,et al.  Actin-based motility of vaccinia virus , 1995, Nature.

[59]  J. F. Rodríguez,et al.  Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus , 1985, Journal of virology.

[60]  K. Weber,et al.  Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment , 1985, Journal of virology.

[61]  L. Collinson,et al.  An E2-F12 complex is required for IEV morphogenesis during vaccinia infection. , 2009 .

[62]  P. Kellam,et al.  Poxvirus genomes: a phylogenetic analysis. , 2004, The Journal of general virology.