Detection and Segmentation of Brain Metastases with Deep Convolutional Networks

As deep convolutional networks (ConvNets) reach spectacular results on a multitude of computer vision tasks and perform almost as well as a human rater on the task of segmenting gliomas in the brai ...

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Jürgen Schmidhuber,et al.  A fast learning algorithm for image segmentation with max-pooling convolutional networks , 2013, 2013 IEEE International Conference on Image Processing.

[4]  Fei-Fei Li,et al.  Large-Scale Video Classification with Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Luca Maria Gambardella,et al.  Fast image scanning with deep max-pooling convolutional neural networks , 2013, 2013 IEEE International Conference on Image Processing.

[6]  Fred A. Hamprecht,et al.  Multi-modal Brain Tumor Segmentation using Deep Convolutional Neural Networks , 2014 .

[7]  Albert Fornells,et al.  A study of the effect of different types of noise on the precision of supervised learning techniques , 2010, Artificial Intelligence Review.

[8]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Quoc V. Le,et al.  Measuring Invariances in Deep Networks , 2009, NIPS.

[11]  Maria Werner-Wasik,et al.  Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial , 2004, The Lancet.

[12]  Christopher Joseph Pal,et al.  Brain tumor segmentation with Deep Neural Networks , 2015, Medical Image Anal..

[13]  Atsuto Maki,et al.  From generic to specific deep representations for visual recognition , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[14]  Ronald M. Summers,et al.  Detection of Sclerotic Spine Metastases via Random Aggregation of Deep Convolutional Neural Network Classifications , 2014, ArXiv.

[15]  James S. Duncan,et al.  Tracking Metastatic Brain Tumors in Longitudinal Scans via Joint Image Registration and Labeling , 2012, STIA.

[16]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[17]  Trevor Darrell,et al.  Long-term recurrent convolutional networks for visual recognition and description , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[19]  Clément Farabet,et al.  Torch7: A Matlab-like Environment for Machine Learning , 2011, NIPS 2011.

[20]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[21]  Ronan Collobert,et al.  Recurrent Convolutional Neural Networks for Scene Labeling , 2014, ICML.

[22]  Douglas C Noll,et al.  An approach for computer-aided detection of brain metastases in post-Gd T1-W MRI. , 2012, Magnetic resonance imaging.

[23]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[24]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[25]  Isabelle Bloch,et al.  Evaluation of the symmetry plane in 3D MR brain images , 2003, Pattern Recognit. Lett..

[26]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[27]  Xiaogang Wang,et al.  Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks for Pixelwise Classification , 2014, ArXiv.

[28]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[29]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[30]  Chen-Ping Yu,et al.  3D blob based brain tumor detection and segmentation in MR images , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[31]  Joan Bruna,et al.  Training Convolutional Networks with Noisy Labels , 2014, ICLR 2014.

[32]  Peng Wang,et al.  Computer‐aided detection of metastatic brain tumors using automated three‐dimensional template matching , 2010, Journal of magnetic resonance imaging : JMRI.

[33]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[35]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[36]  Luca Maria Gambardella,et al.  High-Performance Neural Networks for Visual Object Classification , 2011, ArXiv.

[37]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[38]  C. Christiansen,et al.  X-ray contrast media--an overview. , 2005, Toxicology.

[39]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[40]  Stephen Gould,et al.  Decomposing a scene into geometric and semantically consistent regions , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[41]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[42]  John Y. K. Lee,et al.  Stereotactic radiosurgery in the management of brain metastasis. , 2007, Neurosurgical focus.

[43]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[44]  Yann LeCun,et al.  Scene parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers , 2012, ICML.

[45]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.