Generalized Eilenberg Theorem I: Local Varieties of Languages

We investigate the duality between algebraic and coalgebraic recognition of languages to derive a generalization of the local version of Eilenberg's theorem. This theorem states that the lattice of all boolean algebras of regular languages over an alphabet {\Sigma} closed under derivatives is isomorphic to the lattice of all pseudovarieties of {\Sigma}-generated monoids. By applying our method to different categories, we obtain three related results: one, due to Gehrke, Grigorieff and Pin, weakens boolean algebras to distributive lattices, one weakens them to join-semilattices, and the last one considers vector spaces over the binary field.

[1]  Jean-Eric Pin,et al.  A variety theorem without complementation , 1995 .

[2]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[3]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[4]  Jirí Adámek,et al.  Iterative algebras at work , 2006, Mathematical Structures in Computer Science.

[5]  J. Bell STONE SPACES (Cambridge Studies in Advanced Mathematics 3) , 1987 .

[6]  Samuel Eilenberg Automata, Languages and Machines, Vol. B , 1976 .

[7]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[8]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[9]  Felix Hueber,et al.  Locally Presentable And Accessible Categories , 2016 .

[10]  Serge Grigorieff,et al.  A Topological Approach to Recognition , 2010, ICALP.

[11]  N. Pippenger,et al.  Regular languages and stone duality , 1997, Theory of Computing Systems.

[12]  Bernhard Banaschewski,et al.  Tensor Products and Bimorphisms , 1976, Canadian Mathematical Bulletin.

[13]  Benjamin Steinberg,et al.  The q-theory of Finite Semigroups , 2008 .

[14]  Mai Gehrke Stone duality, topological algebra, and recognition , 2013, ArXiv.

[15]  STEPHrN L. BLOOM,et al.  Varieties of Ordered Algebras , 1976, J. Comput. Syst. Sci..

[16]  Jorge Almeida,et al.  Finite Semigroups and Universal Algebra , 1995 .

[17]  Benjamin Steinberg,et al.  The Complexity of Finite Semigroups , 2009 .

[18]  Libor Polák Syntactic Semiring of a Language , 2001, MFCS.

[19]  Jirí Adámek,et al.  On tree coalgebras and coalgebra presentations , 2004, Theor. Comput. Sci..

[20]  Jan Reiterman,et al.  The Birkhoff theorem for finite algebras , 1982 .

[21]  Serge Grigorieff,et al.  Duality and Equational Theory of Regular Languages , 2008, ICALP.