Plot Induction and Evolutionary Search for Story Generation

In this paper we develop a story generator that leverages knowledge inherent in corpora without requiring extensive manual involvement. A key feature in our approach is the reliance on a story planner which we acquire automatically by recording events, their participants, and their precedence relationships in a training corpus. Contrary to previous work our system does not follow a generate-and-rank architecture. Instead, we employ evolutionary search techniques to explore the space of possible stories which we argue are well suited to the story generation task. Experiments on generating simple children's stories show that our system outperforms previous data-driven approaches.

[1]  Christopher R. Johnson,et al.  Background to Framenet , 2003 .

[2]  Marc Cavazza,et al.  Interactive Storytelling with Literary Feelings , 2007, ACII.

[3]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[4]  Ted Briscoe,et al.  Robust Accurate Statistical Annotation of General Text , 2002, LREC.

[5]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[6]  Mariët Theune,et al.  The Virtual Storyteller : story generation by simulation , 2008 .

[7]  Ehud Reiter,et al.  Book Reviews: Building Natural Language Generation Systems , 2000, CL.

[8]  Pablo Gervás,et al.  A Case Based Reasoning Approach to Story Plot Generation , 2004, ECCBR.

[9]  Minkoo Kim,et al.  Automatic Short Story Generator Based on Autonomous Agents , 2002, PRIMA.

[10]  Hugo Liu,et al.  Makebelieve: using commonsense knowledge to generate stories , 2002, AAAI/IAAI.

[11]  Ted Briscoe,et al.  A Large Subcategorization Lexicon for Natural Language Processing Applications , 2006, LREC.

[12]  Chris Mellish,et al.  Capturing the Interaction between Aggregation and Text Planning in Two Generation Systems , 2000, INLG.

[13]  Dekang Lin,et al.  Automatic Retrieval and Clustering of Similar Words , 1998, ACL.

[14]  Mirella Lapata,et al.  Modeling Local Coherence: An Entity-Based Approach , 2005, ACL.

[15]  James R. Meehan,et al.  TALE-SPIN, An Interactive Program that Writes Stories , 1977, IJCAI.

[16]  Soraia Raupp Musse,et al.  Planning algorithms for interactive storytelling , 2007, CIE.

[17]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[18]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[19]  Nikiforos Karamanis,et al.  Stochastic Text Structuring Using the Principle of Continuity , 2002, INLG.

[20]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Event Chains , 2008, ACL.

[21]  Ralph Grishman,et al.  Comlex Syntax: Building a Computational Lexicon , 1994, COLING.

[22]  Martin Corley,et al.  Timing accuracy of Web experiments: A case study using the WebExp software package , 2009, Behavior research methods.

[23]  Mirella Lapata,et al.  Learning to Tell Tales: A Data-driven Approach to Story Generation , 2009, ACL.

[24]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Schemas and their Participants , 2009, ACL.

[25]  Vasileios Hatzivassiloglou,et al.  Two-Level, Many-Paths Generation , 1995, ACL.

[26]  Hugo Liu,et al.  ConceptNet — A Practical Commonsense Reasoning Tool-Kit , 2004 .

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Benoit Lavoie,et al.  A Fast and Portable Realizer for Text Generation Systems , 1997, ANLP.

[29]  Mark O. Riedl A Planning Approach to Story Generation for History Education , 2004 .

[30]  Chris Mellish,et al.  Experiments Using Stochastic Search for Text Planning , 1998, INLG.