Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability

[1]  Jonathan S. Dordick,et al.  Spaceflight Promotes Biofilm Formation by Pseudomonas aeruginosa , 2013, PloS one.

[2]  R. Hancock,et al.  Phosphate Starvation Promotes Swarming Motility and Cytotoxicity of Pseudomonas aeruginosa , 2012, Applied and Environmental Microbiology.

[3]  C. M. Ott,et al.  Induction of Attachment-Independent Biofilm Formation and Repression of hfq Expression by Low-Fluid-Shear Culture of Staphylococcus aureus , 2011, Applied and Environmental Microbiology.

[4]  A. Sapino,et al.  Formalin Fixation at Low Temperature Better Preserves Nucleic Acid Integrity , 2011, PloS one.

[5]  G. Wong,et al.  The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa , 2011, PLoS pathogens.

[6]  C. Mark Ott,et al.  Transcriptional and Proteomic Responses of Pseudomonas aeruginosa PAO1 to Spaceflight Conditions Involve Hfq Regulation and Reveal a Role for Oxygen , 2010, Applied and Environmental Microbiology.

[7]  M. Whiteley,et al.  Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH , 2010, Molecular microbiology.

[8]  M. Egli,et al.  Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates. , 2010, FEMS immunology and medical microbiology.

[9]  Somchai Chutipongtanate,et al.  Systematic comparisons of artificial urine formulas for in vitro cellular study. , 2010, Analytical biochemistry.

[10]  P. Monsieurs,et al.  Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. , 2010, Environmental microbiology.

[11]  D. Schomburg,et al.  How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. , 2010, Environmental Microbiology.

[12]  D. Klaus,et al.  Space Microbiology , 2010, Microbiology and Molecular Biology Reviews.

[13]  C. Mark Ott,et al.  Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight , 2008, PloS one.

[14]  D M Klaus,et al.  Buoyant plumes from solute gradients generated by non-motile Escherichia coli , 2008, Physical biology.

[15]  Patrick De Boever,et al.  Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. , 2008, Environmental microbiology.

[16]  J. W. Wilson,et al.  Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq , 2007, Proceedings of the National Academy of Sciences.

[17]  R. Stockley,et al.  Effect of storage and postage on recovery and quantitation of bacteria in sputum samples , 2007, Journal of Clinical Pathology.

[18]  A. Mittal,et al.  Correlating single cell motility with population growth dynamics for flagellated bacteria. , 2007, Biotechnology and bioengineering.

[19]  D. Klaus,et al.  Microgravity, bacteria, and the influence of motility , 2007 .

[20]  G. Sonnenfeld The immune system in space, including Earth-based benefits of space-based research. , 2005, Current pharmaceutical biotechnology.

[21]  G. O’Toole,et al.  Evidence for Two Flagellar Stators and Their Role in the Motility of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[22]  Yuri Gagarin,et al.  Travails of microgravity : man and microbes in space , 2005 .

[23]  Alexander Hoehn,et al.  A modular suite of hardware enabling spaceflight cell culture research. , 2004, Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology.

[24]  K. Jules,et al.  The microgravity environment for experiments on the International Space Station. , 2004, Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology.

[25]  Daniel G. Lee,et al.  The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Ohtake,et al.  Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa. , 2004, FEMS microbiology letters.

[27]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[28]  H. Mennigmann,et al.  Growth and differentiation of Bacillus subtilis under microgravitiy , 1986, Naturwissenschaften.

[29]  V. Kapur,et al.  Bmc Microbiology , 2022 .

[30]  D. Klaus,et al.  Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency ofE. coli , 2002, Microgravity science and technology.

[31]  J. Costerton,et al.  Biofilms as complex differentiated communities. , 2002, Annual review of microbiology.

[32]  H. Davey Flow cytometric techniques for the detection of microorganisms. , 2002, Methods in cell science : an official journal of the Society for In Vitro Biology.

[33]  D. Haas,et al.  The CbrA–CbrB two‐component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa , 2001, Molecular microbiology.

[34]  M. Kacena,et al.  Effects of space flight and mixing on bacterial growth in low volume cultures. , 1999, Microgravity science and technology.

[35]  P. Stewart,et al.  Spatial Physiological Heterogeneity inPseudomonas aeruginosa Biofilm Is Determined by Oxygen Availability , 1998, Applied and Environmental Microbiology.

[36]  D. Klaus,et al.  The effects of space flight on the production of monorden by Humicola fuscoatra WC5157 in solid-state fermentation , 1998, Applied Microbiology and Biotechnology.

[37]  P. Todd,et al.  Growth characteristics of E. coli and B. subtilis cultured on an agar substrate in microgravity , 1997 .

[38]  C. Keevil,et al.  A simple artificial urine for the growth of urinary pathogens , 1997, Letters in applied microbiology.

[39]  L. Stodieck,et al.  Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. , 1997, Microbiology.

[40]  P. Bouloc,et al.  The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. , 1996, Journal of biotechnology.

[41]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[42]  M. Heise,et al.  Response of growing bacteria to reduction in gravity , 1994 .

[43]  C. Woldringh,et al.  Growth and division of Escherichia coli under microgravity conditions. , 1994, Research in microbiology.

[44]  P. Matsumura,et al.  Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth , 1993, Journal of bacteriology.

[45]  P. Bouloc,et al.  Escherichia coli metabolism in space. , 1991, Journal of general microbiology.

[46]  H. Mennigmann,et al.  Growth and differentiation of Bacillus subtilis under microgravity. , 1986, Die Naturwissenschaften.

[47]  P. Volz,et al.  Phosphate uptake in Saccharomyces cerevisiae Hansen wild type and phenotypes exposed to space flight irradiation , 1979, Applied and environmental microbiology.

[48]  T. E. Patterson,et al.  Effect of Storage at 1° and 4°C on Viability and Injury of Staphylococcus aureus, Escherichia coli and Streptococcus faecalis , 1979 .

[49]  T. E. Patterson,et al.  Effect of storage at 1 degree and 4 degrees C on viability and injury of Staphylococcus aureus, Escherichia coli and Streptococcus faecalis. , 1979, The Journal of applied bacteriology.

[50]  G R Taylor,et al.  Recovery of medically important microorganisms from Apollo astronauts. , 1974, Aerospace medicine.

[51]  F. Ng,et al.  Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. , 1973, The Biochemical journal.

[52]  R. Mattoni SPACE-FLIGHT EFFECTS AND GAMMA RADIATION INTERACTION ON GROWTH AND INDUCTION OF LYSOGENIC BACTERIA: A PRELIMINARY REPORT. , 1968 .

[53]  B. Holloway Genetic recombination in Pseudomonas aeruginosa. , 1955, Journal of general microbiology.