The Rolling Bearing Fault Diagnosis Research Based on Improved Hilbert-Huang Transformation

For empirical mode decomposition (EMD) of Hilbert-Huang transform (HHT) exists the problem of mode mixing. An analysis method based on ensemble empirical mode decomposition (EEMD) is proposed to apply to fault diagnosis of rolling bearing. This paper puts forward, after signal pretreatment, applying EEMD method to acquire the intrinsic mode function (IMF) of fault signal. Then according to correlation coefficient for IMFs and the signal before decomposing by EEMD method, some redundant low frequency IMFs produced in the process of decomposition can be eliminated, then the effective IMF components are selected to perform a local Hilbert marginal spectrum analysis, then fault characteristics are extracted. Through the vibration analysis of inner-race fault bearing it shows that this method can be effectively applied to extract fault characteristics of rolling bearing.