Scoping analysis of in situ thermal-hydrological testing at Yucca Mountain

In situ thermal tests, which are to be conducted in the Exploratory Studies Facility (ESF) in the unsaturated zone (UZ) at Yucca Mountain, are required to test coupled thermal-hydrological-geomechanical-geochemical (T-H-M-C) process models that support total system performance assessment. The ESF thermal tests must provide an understanding of coupled T-H-M-C processes that are relevant to expected repository conditions. Current planning includes the possibility of two large-scale tests: (1) the first ESF (drift-scale) thermal test, which will be conducted under an accelerated heatup and cooldown schedule, and (2) a second ESF (multi-drift) test, which will be larger-scale, longer-duration test, conducted under a less accelerated heatup and cooldown schedule. With the V-TOUGH (vectorized transport of unsaturated groundwater and heat) code, the authors modeled and evaluated a range of heater test sizes, heating rates, and heating durations under a range of plausible hydrological conditions to develop a test design that provides sufficient (and timely) information to determine the following: the dominant mode(s) of heat flow; the major T-H regime(s) and the T-H-M-C processes that determine the magnitude and direction of vapor and condensate flow; and the influence of heterogeneous conditions on the flow of heat, vapor, and condensate. A major purpose of the ESF thermal tests is to determine which major decay-heat-driven T-H flow regime(s) will govern the magnitude and direction of vapor and condensate flow in the UZ. Another major purpose of the thermal tests is to determine the degree of vapor diffusion enhancement.