Approximate distance oracles for geometric spanners

Given an arbitrary real constant ϵ > 0, and a geometric graph <i>G</i> in <i>d</i>-dimensional Euclidean space with <i>n</i> points, <i>O</i>(<i>n</i>) edges, and constant dilation, our main result is a data structure that answers (1 + ϵ)-approximate shortest-path-length queries in constant time. The data structure can be constructed in <i>O</i>(<i>n</i> log <i>n</i>) time using <i>O</i>(<i>n</i> log <i>n</i>) space. This represents the first data structure that answers (1 + ϵ)-approximate shortest-path queries in constant time, and hence functions as an approximate distance oracle. The data structure is also applied to several other problems. In particular, we also show that approximate shortest-path queries between vertices in a planar polygonal domain with “rounded” obstacles can be answered in constant time. Other applications include query versions of <i>closest-pair</i> problems, and the efficient computation of the approximate dilations of geometric graphs. Finally, we show how to extend the main result to answer (1 + ϵ)-approximate shortest-path-length queries in constant time for geometric spanner graphs with <i>m</i> = ω(<i>n</i>) edges. The resulting data structure can be constructed in <i>O</i>(<i>m</i> + <i>n</i> log <i>n</i>) time using <i>O</i>(<i>n</i> log <i>n</i>) space.

[1]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[2]  Leonidas J. Guibas,et al.  Optimal Shortest Path Queries in a Simple Polygon , 1989, J. Comput. Syst. Sci..

[3]  Carl Gutwin,et al.  Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..

[4]  Piotr Indyk,et al.  Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.

[5]  Joseph S. B. Mitchell,et al.  Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[6]  Jeffrey S. Salowe Constructing multidimensional spanner graphs , 1991, Int. J. Comput. Geom. Appl..

[7]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[8]  Danny Ziyi Chen,et al.  On the all-pairs Euclidean short path problem , 1995, SODA '95.

[9]  Christos D. Zaroliagis,et al.  Experimental Comparison of Shortest Path Approaches for Timetable Information , 2004, ALENEX/ANALC.

[10]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[11]  Giri Narasimhan,et al.  Approximating the Stretch Factor of Euclidean Graphs , 2000, SIAM J. Comput..

[12]  Joseph S. B. Mitchell,et al.  An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..

[13]  Ovidiu Daescu,et al.  On Geometric Path Query Problems , 1997, Int. J. Comput. Geom. Appl..

[14]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[15]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[16]  Dorothea Wagner,et al.  Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs , 2003, ESA.

[17]  Danny Ziyi Chen,et al.  Shortest Path Queries Among Weighted Obstacles in the Rectilinear Plane , 2000, SIAM J. Comput..

[18]  Pankaj K. Agarwal,et al.  Computing Approximate Shortest Paths on Convex Polytopes , 2001, Algorithmica.

[19]  Uzi Vishkin,et al.  On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.

[20]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[21]  Christos D. Zaroliagis,et al.  Dynamic Shortest Paths Containers , 2004, ATMOS.

[22]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[23]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[24]  Joseph S. B. Mitchell,et al.  Shortest paths among obstacles in the plane , 1993, SCG '93.

[25]  Joachim Gudmundsson,et al.  Approximate Distance Oracles Revisited , 2002, ISAAC.

[26]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[27]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[28]  김동규,et al.  [서평]「Algorithms on Strings, Trees, and Sequences」 , 2000 .

[29]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[30]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[31]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[32]  T. Willhalm,et al.  Geometric Shortest Path Containers , 2004 .

[33]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[34]  Leonidas J. Guibas,et al.  Discrete Mobile Centers , 2003, Discret. Comput. Geom..

[35]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[36]  Timothy M. Chan Approximate Nearest Neighbor Queries Revisited , 1998, Discret. Comput. Geom..

[37]  Sariel Har-Peled,et al.  Approximate shortest paths and geodesic diameters on convex polytopes in three dimensions , 1997, SCG '97.

[38]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[39]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric graphs , 2002, SODA '02.

[40]  Sandeep Sen,et al.  Approximate distance oracle for unweighted graphs in Õ(n²) time , 2004 .

[41]  Joachim Gudmundsson,et al.  Fast Pruning of Geometric Spanners , 2005, STACS.

[42]  Michiel H. M. Smid,et al.  Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.

[43]  Mark de Berg,et al.  Realistic input models for geometric algorithms , 1997, SCG '97.

[44]  Paul B. Callahan,et al.  Dealing with higher dimensions: the well-separated pair decomposition and its applications , 1995 .

[45]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[46]  Gautam Das,et al.  WHICH TRIANGULATIONS APPROXIMATE THE COMPLETE GRAPH? , 2022 .

[47]  Sanjeev Arora,et al.  Nearly Linear Time Approximation Schemes for Euclidean TSP and Other Geometric Problems , 1997, RANDOM.

[48]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[49]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[50]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[51]  Edith Cohen Fast algorithms for constructing t-spanners and paths with stretch t , 1993, FOCS.

[52]  D. T. Lee,et al.  Geometric complexity of some location problems , 1986, Algorithmica.

[53]  Mark H. Overmars,et al.  Range Searching and Point Location among Fat Objects , 1994, J. Algorithms.

[54]  GudmundssonJoachim,et al.  Approximate distance oracles for geometric spanners , 2008 .