Approximate distance oracles for geometric spanners
暂无分享,去创建一个
Joachim Gudmundsson | Giri Narasimhan | Michiel H. M. Smid | Christos Levcopoulos | Joachim Gudmundsson | M. Smid | G. Narasimhan | C. Levcopoulos
[1] Dan Gusfield,et al. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .
[2] Leonidas J. Guibas,et al. Optimal Shortest Path Queries in a Simple Polygon , 1989, J. Comput. Syst. Sci..
[3] Carl Gutwin,et al. Classes of graphs which approximate the complete euclidean graph , 1992, Discret. Comput. Geom..
[4] Piotr Indyk,et al. Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.
[5] Joseph S. B. Mitchell,et al. Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[6] Jeffrey S. Salowe. Constructing multidimensional spanner graphs , 1991, Int. J. Comput. Geom. Appl..
[7] Joachim Gudmundsson,et al. Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..
[8] Danny Ziyi Chen,et al. On the all-pairs Euclidean short path problem , 1995, SODA '95.
[9] Christos D. Zaroliagis,et al. Experimental Comparison of Shortest Path Approaches for Timetable Information , 2004, ALENEX/ANALC.
[10] Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.
[11] Giri Narasimhan,et al. Approximating the Stretch Factor of Euclidean Graphs , 2000, SIAM J. Comput..
[12] Joseph S. B. Mitchell,et al. An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..
[13] Ovidiu Daescu,et al. On Geometric Path Query Problems , 1997, Int. J. Comput. Geom. Appl..
[14] Michael A. Bender,et al. The LCA Problem Revisited , 2000, LATIN.
[15] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[16] Dorothea Wagner,et al. Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs , 2003, ESA.
[17] Danny Ziyi Chen,et al. Shortest Path Queries Among Weighted Obstacles in the Rectilinear Plane , 2000, SIAM J. Comput..
[18] Pankaj K. Agarwal,et al. Computing Approximate Shortest Paths on Convex Polytopes , 2001, Algorithmica.
[19] Uzi Vishkin,et al. On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.
[20] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[21] Christos D. Zaroliagis,et al. Dynamic Shortest Paths Containers , 2004, ATMOS.
[22] S. Rao Kosaraju,et al. Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.
[23] Robert E. Tarjan,et al. Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..
[24] Joseph S. B. Mitchell,et al. Shortest paths among obstacles in the plane , 1993, SCG '93.
[25] Joachim Gudmundsson,et al. Approximate Distance Oracles Revisited , 2002, ISAAC.
[26] Yair Bartal,et al. Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[27] Sanjeev Arora,et al. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.
[28] 김동규,et al. [서평]「Algorithms on Strings, Trees, and Sequences」 , 2000 .
[29] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[30] Subhash Suri,et al. An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..
[31] Mikkel Thorup,et al. Approximate distance oracles , 2001, JACM.
[32] T. Willhalm,et al. Geometric Shortest Path Containers , 2004 .
[33] Giri Narasimhan,et al. A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..
[34] Leonidas J. Guibas,et al. Discrete Mobile Centers , 2003, Discret. Comput. Geom..
[35] Uri Zwick,et al. All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..
[36] Timothy M. Chan. Approximate Nearest Neighbor Queries Revisited , 1998, Discret. Comput. Geom..
[37] Sariel Har-Peled,et al. Approximate shortest paths and geodesic diameters on convex polytopes in three dimensions , 1997, SCG '97.
[38] Micha Sharir,et al. Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.
[39] Joachim Gudmundsson,et al. Approximate distance oracles for geometric graphs , 2002, SODA '02.
[40] Sandeep Sen,et al. Approximate distance oracle for unweighted graphs in Õ(n²) time , 2004 .
[41] Joachim Gudmundsson,et al. Fast Pruning of Geometric Spanners , 2005, STACS.
[42] Michiel H. M. Smid,et al. Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.
[43] Mark de Berg,et al. Realistic input models for geometric algorithms , 1997, SCG '97.
[44] Paul B. Callahan,et al. Dealing with higher dimensions: the well-separated pair decomposition and its applications , 1995 .
[45] Piotr Indyk,et al. Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[46] Gautam Das,et al. WHICH TRIANGULATIONS APPROXIMATE THE COMPLETE GRAPH? , 2022 .
[47] Sanjeev Arora,et al. Nearly Linear Time Approximation Schemes for Euclidean TSP and Other Geometric Problems , 1997, RANDOM.
[48] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[49] Kenneth L. Clarkson,et al. Approximation algorithms for shortest path motion planning , 1987, STOC.
[50] Joseph S. B. Mitchell,et al. Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.
[51] Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t , 1993, FOCS.
[52] D. T. Lee,et al. Geometric complexity of some location problems , 1986, Algorithmica.
[53] Mark H. Overmars,et al. Range Searching and Point Location among Fat Objects , 1994, J. Algorithms.
[54] GudmundssonJoachim,et al. Approximate distance oracles for geometric spanners , 2008 .