The unification of the nuclear optical potential

Abstract The nuclear mean field is defined for bound and scattering states and its parameters shown to vary continuously over the whole energy range. The real and imaginary parts of the potential are connected by dispersion relations, and this unifies the potential from negative to positive energies. Recent analyses of experimental data using dispersion relations are reviewed.

[1]  P. Hodgson Alpha clustering in nuclei , 1990 .

[2]  A. Merchant,et al.  The alpha-particle structure of 44Ti , 1989 .

[3]  P. Hodgson,et al.  Dispersion relation analysis of the total neutron cross section anomaly , 1988 .

[4]  C. Mahaux,et al.  The p-40Ca and n-40Ca mean fields from the iterative moment approach , 1988 .

[5]  Hicks,et al.  Energy dependence of the mean-field potential for neutron scattering from 190,192Os and 194,196Pt. , 1988, Physical review. C, Nuclear physics.

[6]  W. Tornow,et al.  Impact of the dispersion relation on the analyzing power for neutron elastic scattering from 40Ca , 1988 .

[7]  Finlay,et al.  Evidence for dispersion relation corrections in inelastic nucleon scattering to the 3- state in 208Pb. , 1988, Physical review. C, Nuclear physics.

[8]  Johnson,et al.  Unified description of the neutron-208Pb mean field between -20 and +165 MeV from the dispersion relation constraint. , 1987, Physical review. C, Nuclear physics.

[9]  Mahaux,et al.  Fermi-surface anomaly for neutrons in yttrium. , 1987, Physical review. C, Nuclear physics.

[10]  Alan B. Smith,et al.  Energy dependence of the optical-model potential for fast-neutron scattering from bismuth , 1987 .

[11]  Hicks,et al.  Influence of nuclear dynamics on neutron scattering from 194Pt. , 1987, Physical review. C, Nuclear physics.

[12]  C. Mahaux,et al.  Extrapolation from positive to negative energy of the Woods-Saxon parametrization of the n-208Pb mean field , 1987 .

[13]  Mahaux,et al.  Calculation of the shell-model potential from the optical-model potential. , 1986, Physical Review Letters.

[14]  Lawson,et al.  Search for the Fermi-surface anomaly in fast-neutron scattering from yttrium. , 1986, Physical review. C, Nuclear physics.

[15]  Michel,et al.  Molecular interpretation of the oscillations of the fusion excitation function for the alpha +40Ca system. , 1986, Physical review. C, Nuclear physics.

[16]  C. Mahaux,et al.  Empirical and theoretical investigation of the average potential of nucleons in 40Ca and 208Pb , 1986 .

[17]  S. Ohkubo,et al.  Evidence for alpha-particle clustering in the Ti44 nucleus , 1986 .

[18]  Alan B. Smith,et al.  On the energy dependence of the optical model of neutron scattering from niobium , 1986 .

[19]  Walter,et al.  Coupled-channel analysis of nucleon scattering from sup40Ca up to 80 MeV. , 1986, Physical review. C, Nuclear physics.

[20]  C. Mahaux,et al.  Causality and the threshold anomaly of the nucleus-nucleus potential , 1986 .

[21]  J. Annand,et al.  A low-energy optical-model analysis of 208Pb and 209Bi☆ , 1985 .

[22]  J. S. Petler,et al.  Anomalous behavior of the n + 208Pb potential near the fermi energy☆ , 1985 .

[23]  P. Hodgson The neutron optical potential , 1984 .

[24]  P. Hodgson The nucleon optical potential , 1984 .

[25]  C. Mahaux,et al.  Contribution of core polarization to single-particle energies in 208Pb , 1983 .

[26]  P. Hodgson Effective mass in nuclei , 1983 .

[27]  C. Mahaux,et al.  Polarization and correlation contributions to the shell-model potential in 40Ca and 208Pb , 1982 .

[28]  M. Bauer,et al.  A unified potential for bound and scattering states , 1982 .

[29]  G. Brown,et al.  The giant Gamow-Teller resonance , 1981 .

[30]  T. Vertse,et al.  Low-energy behaviour of the real depth of the proton optical potential , 1981 .

[31]  C. Mahaux,et al.  Energy dependence of the effective mass in finite nuclei , 1981 .

[32]  P. Hodgson,et al.  The spin-orbit term in the nucleon optical potential , 1980 .

[33]  Peter Edward Hodgson,et al.  Neutron densities and the single particle structure of several even-even nuclei from Ca40 to Pb208 , 1979 .

[34]  J. S. Dehesa,et al.  A dynamical theory of the giant dipole resonance in nuclei , 1979 .

[35]  B. A. Brown,et al.  The charge distributions of the oxygen and calcium isotopes , 1979 .

[36]  P. Hodgson,et al.  Charge density and single-particle structure: the nuclei39K,40Ca and48Ca , 1979 .

[37]  P. Hodgson,et al.  Charge density and single-particle structure of 58Ni , 1978 .

[38]  W. Haider,et al.  On the existence of a surface-peaked term in the real optical potential , 1976 .

[39]  F. Perey,et al.  Compilation of phenomenological optical-model parameters 1969–1972 , 1974 .

[40]  P. Hodgson,et al.  The systematics of nuclear single-particle states (II). the region A < 35 , 1973 .

[41]  V. Edwards,et al.  The neutron excess distribution in 208Pb , 1970 .

[42]  G. Passatore On the energy dependence of the empirical optical potential , 1968 .

[43]  L. Elton Optical model analysis for protons at 180 MeV , 1966 .

[44]  P. Hodgson The optical model of elastic scattering , 1963 .

[45]  M. A. Grace,et al.  Lifetime measurements on the first excited states of Mg25 and Al25 , 1960 .