Reconstruction of Bacterial and Viral Genomes from Multiple Metagenomes

Several metagenomic projects have been accomplished or are in progress. However, in most cases, it is not feasible to generate complete genomic assemblies of species from the metagenomic sequencing of a complex environment. Only a few studies have reported the reconstruction of bacterial genomes from complex metagenomes. In this work, Binning-Assembly approach has been proposed and demonstrated for the reconstruction of bacterial and viral genomes from 72 human gut metagenomic datasets. A total 1156 bacterial genomes belonging to 219 bacterial families and, 279 viral genomes belonging to 84 viral families could be identified. More than 80% complete draft genome sequences could be reconstructed for a total of 126 bacterial and 11 viral genomes. Selected draft assembled genomes could be validated with 99.8% accuracy using their ORFs. The study provides useful information on the assembly expected for a species given its number of reads and abundance. This approach along with spiking was also demonstrated to be useful in improving the draft assembly of a bacterial genome. The Binning-Assembly approach can be successfully used to reconstruct bacterial and viral genomes from multiple metagenomic datasets obtained from similar environments.

[1]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[2]  F. Bushman,et al.  The human gut virome: inter-individual variation and dynamic response to diet. , 2011, Genome research.

[3]  J. Pincemail,et al.  [Oxidative stress]. , 2007, Revue medicale de Liege.

[4]  S. Salzberg,et al.  Phymm and PhymmBL: Metagenomic Phylogenetic Classification with Interpolated Markov Models , 2009, Nature Methods.

[5]  Steven Salzberg,et al.  BIOINFORMATICS ORIGINAL PAPER , 2004 .

[6]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[7]  Itai Sharon,et al.  Genomes from Metagenomics , 2013, Science.

[8]  M. Koopmans,et al.  Assembly of viral genomes from metagenomes , 2014, Front. Microbiol..

[9]  Brian C. Thomas,et al.  The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria , 2013, eLife.

[10]  B. Birren,et al.  Genome Project Standards in a New Era of Sequencing , 2009, Science.

[11]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .

[12]  Peer Bork,et al.  Classification and quantification of bacteriophage taxa in human gut metagenomes , 2014, The ISME Journal.

[13]  P. Pevzner,et al.  Efficient de novo assembly of single-cell bacterial genomes from short-read data sets , 2011, Nature Biotechnology.

[14]  Donovan Parks,et al.  GroopM: an automated tool for the recovery of population genomes from related metagenomes , 2014, PeerJ.

[15]  G. Canny,et al.  Bacteria in the Intestine, Helpful Residents or Enemies from Within? , 2008, Infection and Immunity.

[16]  T. Scheffer,et al.  Taxonomic metagenome sequence assignment with structured output models , 2011, Nature Methods.

[17]  I. Rigoutsos,et al.  Accurate phylogenetic classification of variable-length DNA fragments , 2007, Nature Methods.

[18]  M. Sogin,et al.  Sewage Reflects the Microbiomes of Human Populations , 2015, mBio.

[19]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[20]  Lin Liu,et al.  Comparison of Next-Generation Sequencing Systems , 2012, Journal of biomedicine & biotechnology.

[21]  Daphne Koller,et al.  Genovo: De Novo Assembly for Metagenomes , 2010, RECOMB.

[22]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[23]  Leping Li,et al.  ART: a next-generation sequencing read simulator , 2012, Bioinform..

[24]  C. Huttenhower,et al.  Metagenomic microbial community profiling using unique clade-specific marker genes , 2012, Nature Methods.

[25]  Gilbert Chin,et al.  Fast and Accurate , 2005 .

[26]  Vineet K. Sharma,et al.  Fast and Accurate Taxonomic Assignments of Metagenomic Sequences Using MetaBin , 2012, PloS one.

[27]  Peter Ruhdal Jensen,et al.  Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin , 2013, Applied and Environmental Microbiology.

[28]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[29]  P. Hugenholtz,et al.  Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes , 2013, Nature Biotechnology.

[30]  Naryttza N. Diaz,et al.  TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach , 2009, BMC Bioinformatics.

[31]  S. Tringe,et al.  MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm , 2014, Microbiome.

[32]  Alison S. Waller,et al.  Assessment of Metagenomic Assembly Using Simulated Next Generation Sequencing Data , 2012, PloS one.

[33]  Herman Goossens,et al.  Employing whole genome mapping for optimal de novo assembly of bacterial genomes , 2014, BMC Research Notes.

[34]  M. Pignatelli,et al.  Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut , 2014, BMC Genomics.

[35]  Hideaki Tanaka,et al.  MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads , 2011, BCB '11.

[36]  Howard C. Tenenbaum,et al.  Bacterial biogeography of the human digestive tract , 2011, Scientific reports.

[37]  P. Pevzner,et al.  De novo assembly of bacterial genomes from single cells , 2011, Nature biotechnology.

[38]  N. Roy,et al.  Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine , 2014, Nutrients.

[39]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[40]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[41]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[42]  Alice Carolyn McHardy,et al.  Taxonomic binning of metagenome samples generated by next-generation sequencing technologies , 2012, Briefings Bioinform..

[43]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[44]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[45]  M. Borodovsky,et al.  Ab initio gene identification in metagenomic sequences , 2010, Nucleic acids research.

[46]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[47]  N. Kyrpides,et al.  Individual genome assembly from complex community short-read metagenomic datasets , 2011, The ISME Journal.

[48]  S. Tringe,et al.  Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen , 2011, Science.

[49]  F. Rohwer,et al.  Metagenomics and future perspectives in virus discovery , 2012, Current Opinion in Virology.

[50]  Nicola K. Petty,et al.  BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons , 2011, BMC Genomics.

[51]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[52]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[53]  Sergey Koren,et al.  Bambus 2: scaffolding metagenomes , 2011, Bioinform..

[54]  Kenneth H. Williams,et al.  Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment , 2013, Nature Communications.

[55]  Brian C. Thomas,et al.  Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla , 2012, Science.

[56]  Siu-Ming Yiu,et al.  Meta-IDBA: a de Novo assembler for metagenomic data , 2011, Bioinform..