Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG

Spectroscopic measurements and analysis of diode laser-pumped operation of Tm,Ho:YAG at 2.1 mu m at room temperature have been performed. The peak effective stimulated emission cross section is measured to be 9*10/sup -21/ cm/sup 2/ at 2.091 mu m and the upper state lifetime is 8.5 ms. Under diode laser pumping, thresholds of 4.4 mW of absorbed power and slope efficiency of 19% have been demonstrated. Calculations of threshold power are performed based on the spectroscopic measurements. An energy transfer upconversion process is identified which leads to a sublinear rise in upper-state population with pump power. >

[1]  R. Byer,et al.  Energy transfer and inversion saturation in Tm, Ho: YAG , 1988 .

[2]  G. Huber,et al.  Cr-SENSITIZED RARE EARTH GARNET LASERS AT ROOM TEMPERATURE , 1987 .

[3]  R. Byer,et al.  Continuous-wave operation at 2.1 microm of a diode-laser-pumped, Tm-sensitized Ho:Y(3)Al(5)O(12) laser at 300 K. , 1987, Optics letters.

[4]  Efficient holmium:yttrium lithium fluoride laser longitudinally pumped by a semiconductor laser array , 1987 .

[5]  R. Allen,et al.  CW diode-pumped Tm 3+ , Ho 3+ :YAG 2.1 μm room-temperature laser , 1987 .

[6]  Robert L. Byer,et al.  Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser , 1987 .

[7]  A. Prokhorov,et al.  BRIEF COMMUNICATIONS: Lasing of holmium ions as a result of the 5I7-->5I8 transition at room temperature in an yttrium scandium gallium garnet crystal activated with chromium, thulium, and holmium ions , 1986 .

[8]  Leon Esterowitz,et al.  Diode-pumped 2 spl mu/m holmium laser , 1986 .

[9]  L. I. Krutova,et al.  Active medium of lasers operating in the 2-μ spectra range and utilizing gadolinium scandium gallium garnet crystals , 1986 .

[10]  G. Huber,et al.  cw double cross pumping of the 5I7–5I8 laser transition in Ho3+‐doped garnets , 1986 .

[11]  V. A. Pis'mennyi,et al.  New spectroscopic scheme of an active medium for the 2-. mu. m band , 1986 .

[12]  C. Gaeta,et al.  Theoretical analysis of optical fiber laser amplifiers and oscillators. , 1985, Applied optics.

[13]  T. M. Murina,et al.  Cooperative phenomena in yttrium erbium aluminum garnet crystals , 1984 .

[14]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[15]  R. Powell,et al.  Energy transfer in concentrated systems , 1980 .

[16]  V. A. Pis'mennyi,et al.  Frequency conversion of neodymium laser radiation by resonant pumping of YAG crystals activated with Tm3+ and Ho3+ ions , 1977 .

[17]  F. Auzel,et al.  Materials and devices using double-pumped-phosphors with energy transfer , 1973 .

[18]  H. G. Danielmeyer,et al.  Energy transfer and the complete level system of NdUP , 1973 .

[19]  E. Chicklis,et al.  High‐Efficiency Room‐Temperature 2.06‐μm Laser Using Sensitized Ho3+:YLF , 1971 .

[20]  R. Remski,et al.  Temperature dependence of pulsed laser threshold in YAG:Er 3+ , Tm 3+ , Ho + , 1970 .

[21]  L. Johnson,et al.  EFFICIENT, HIGH‐POWER COHERENT EMISSION FROM Ho3+ IONS IN YTTRIUM ALUMINUM GARNET, ASSISTED BY ENERGY TRANSFER , 1966 .

[22]  L. Johnson,et al.  COHERENT OSCILLATIONS FROM Tm3+, Ho3+, Yb3+ and Er3+ IONS IN YTTRIUM ALUMINUM GARNET , 1965 .

[23]  L. Johnson,et al.  Optical Maser Characteristics of Rare‐Earth Ions in Crystals , 1963 .