Optimization of low pressure chemical vapour deposition reactors using hybrid differential evolution

In this study, hybrid differential evolution (HDE) was applied to solve four low-pressure chemical vapour deposition (LPCVD) reactor optimal design problems. The mathematical model for this reactor is described using a two-point boundary value differential-algebraic equation (TPBVP-DAE) problem. HDE is not only applied to solve the optimization problems but also to obtain the solution to TPBVP-DAE. Under this situation, the HDE subroutine should call itself to evaluate the optimal solution to the optimization problem and the solution to TPBVP-DAE. In this study, Fortran 90 was used to implement the HDE subroutine to achieve the calling itself requirement. The recursive HDE subroutine can be efficiently applied to solve the four LPCVD reactor optimal design problems. From the computational results, we observed that the combined optimal design obtain the smallest axial uniformity variation. Furthermore, test function maximization problems were used to compare the performance of the HDE with other methods. Dans cette etude, on a utilise l'evolution differentielle hybride (HDE) pour resoudre les problemes de conception optimale de quatre reacteurs de depǒt de vapeur chimiques a basse pression (LPCVD). Le modele mathematique de ce reacteur est decrit par une equation algebro-differentielle a conditions limites a deux points (TPBVP-DAE). La methode HDE est non seulement utilisee pour resoudre les problemes d'optimisation mais egalement pour obtenir la solution au probleme TPBVP-DAE. Dans ce contexte, la sous-routine HDE doit s'appeler elle-měme pour evaluer la solution optimale au probleme d'optimisation et la solution du TPBVP-DAE. Dans cette etude, on a utilise le Fortran 90 pour implanter la capacite d'auto-appel de la sous-routine HDE. La sous-routine HDE rekurrente peut ětre appliquee efficacement pour resoudre les quatre problemes de conception optimale de reacteurs LPCVD. A partir des resultats obtenus par ordinateur, on a observe que la conception optimale combinee obtient la plus faible variation d'uniformite axiale. En outre, on a utilise des problemes de maximisation de fonctions tests pour comparer la performance de la sous-routine HDE a celle d'autres mehodes.

[1]  Thomas F. Edgar,et al.  Modeling and control of microelectronics materials processing , 1995 .

[2]  M. Toledo-Quiñones,et al.  Dynamic modelling analysis for control of CVD , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[3]  Thomas F. Edgar,et al.  Modeling and scale-up of multiwafer LPCVD reactors , 1992 .

[4]  David B. Graves,et al.  Modeling and Analysis of Low Pressure CVD Reactors , 1983 .

[5]  Ji-Pyng Chiou,et al.  Optimal control and optimal time location problems of differential-algebraic systems by differential evolution , 1997 .

[6]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[7]  Bruce H. Krogh,et al.  Real-time multivariable control of PECVD silicon nitride film properties , 1997 .

[8]  Jean-Michel Renders,et al.  Hybridizing genetic algorithms with hill-climbing methods for global optimization: two possible ways , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[9]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[10]  Mark J. Willis,et al.  Steady-state modelling of chemical process systems using genetic programming , 1997 .

[11]  Tetsuo Morimoto,et al.  Intelligent Control for Plant Production System , 1995 .

[12]  G. T. Tsao,et al.  Fuzzy-Decision-Making Problems of Fuel Ethanol Production Using a Genetically Engineered Yeast , 1998 .

[13]  John Yen,et al.  A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[14]  A. J. Keane,et al.  Genetic algorithm optimization of multi-peak problems: studies in convergence and robustness , 1995, Artif. Intell. Eng..

[15]  Vasilios Manousiouthakis,et al.  KINETIC MODEL REDUCTION USING GENETIC ALGORITHMS , 1998 .

[16]  M. Joshi Modeling of LPCVD Reactors Effect of Empty Inlet Tube , 1987 .

[17]  Feng-Sheng Wang,et al.  Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast , 2000 .

[18]  R. Moros,et al.  A genetic algorithm for generating initial parameter estimations for kinetic models of catalytic processes , 1996 .

[19]  Feng-Sheng Wang,et al.  Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process , 1999 .

[20]  Venkat Venkatasubramanian,et al.  A genetic algorithmic framework for process design and optimization , 1991 .

[21]  Chris Aldrich,et al.  Empirical modelling of chemical process systems with evolutionary programming , 1998 .