A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems

Abstract In this paper, a class of generalized shift-splitting preconditioners with two shift parameters are implemented for nonsymmetric saddle point problems with nonsymmetric positive definite (1, 1) block. The generalized shift-splitting (GSS) preconditioner is induced by a generalized shift-splitting of the nonsymmetric saddle point matrix, resulting in an unconditional convergent fixed-point iteration. By removing the shift parameter in the (1, 1) block of the GSS preconditioner, a deteriorated shift-splitting (DSS) preconditioner is presented. Some useful properties of the DSS preconditioned saddle point matrix are studied. Finally, numerical experiments of a model Navier–Stokes problem are presented to show the effectiveness of the proposed preconditioners.

[1]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[2]  Eric de Sturler,et al.  Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..

[3]  Yang Cao,et al.  Shift-splitting preconditioners for saddle point problems , 2014, J. Comput. Appl. Math..

[4]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[5]  O. Axelsson Preconditioning of Indefinite Problems by Regularization , 1979 .

[6]  Michael K. Ng,et al.  New preconditioners for saddle point problems , 2006, Appl. Math. Comput..

[7]  Yang Cao,et al.  A modified dimensional split preconditioner for generalized saddle point problems , 2013, J. Comput. Appl. Math..

[8]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[9]  Gene H. Golub,et al.  On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..

[10]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[11]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..

[12]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[13]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[14]  Zhong-zhi,et al.  A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES , 2006 .

[15]  Bai,et al.  A REGULARIZED CONJUGATE GRADIENT METHOD FOR SYMMETRIC POSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS , 2002 .

[16]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[17]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[18]  Yang Cao,et al.  On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems , 2009, J. Comput. Appl. Math..

[19]  Yang Cao,et al.  A splitting preconditioner for saddle point problems , 2011, Numer. Linear Algebra Appl..

[20]  E. Sturler,et al.  Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems , 2006 .

[21]  Davod Khojasteh Salkuyeh,et al.  On the generalized shift-splitting preconditioner for saddle point problems , 2014, Appl. Math. Lett..