High Range Resolution Profile of Simulated Aircraft Wake Vortices

Knowledge of radar scattering characteristics is very important to the development of radar detection technology on aircraft wake vortices. In this paper, the high range resolution (HRR) profile of the wake vortex is investigated. The HRR profile is observed to have a particular structure, from which the wingspan of the aircraft can be easily identified. This characteristic could be very useful to identify the wake vortex from the ambient air. At the same time, the Bragg scattering, whose characteristic and applicability are further explored, is used to explain the mechanism of such particular HRR profiles.

[1]  Tao Wang,et al.  ON THE VALIDITY OF BORN APPROXIMATION , 2010 .

[2]  E Marshall Robert,et al.  Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air , 1997 .

[3]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[4]  F. Barbaresco,et al.  Wake vortex X-band radar monitoring: Paris-CDG Airport 2008 campaign results & prospectives , 2009, 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009).

[5]  Michael A. Temple,et al.  High range resolution profiling using phase-coded, stepped-frequency waveforms , 2002 .

[6]  Huiqiang Zhang,et al.  Eliminating ghost images in high-range resolution profiles for stepped-frequency train of linear frequency modulation pulses , 2009 .

[7]  Alan A. Wray,et al.  Analysis of the radar reflectivity of aircraft vortex wakes , 2002, Journal of Fluid Mechanics.

[8]  R. Frehlich,et al.  Maximum Likelihood Estimates of Vortex Parameters from Simulated Coherent Doppler Lidar Data , 2005 .

[9]  Frederic Barbaresco,et al.  Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air , 2010 .

[10]  Chun Shen,et al.  Delaminating quadrature method for multi-dimensional highly oscillatory integrals , 2009, Appl. Math. Comput..

[11]  Laurent Bricteux,et al.  Pulsed 1.5 μm LIDAR for axial aircraft wake vortex detection , 2009 .

[12]  W. L. Bragg,et al.  2 – The Diffraction of Short Electromagnetic Waves by a Crystal* , 1913 .

[13]  F. Barbaresco,et al.  Wake Vortex Profiling by Doppler X-band radar : Orly trials at Initial Take-Off & ILS interception critical areas , 2008, 2008 IEEE Radar Conference.

[14]  K. Chihara,et al.  On-board axial detection of wake vortices using a 2-m m LiDAR , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[16]  F Köpp Wake-Vortex Characteristics of Military-Type Aircraft Measured at Airport Oberpfaffenhofen Using the DLR Laser Doppler Anemometer , 1999 .

[17]  Frédéric Barbaresco,et al.  Wake vortex detection & monitoring by X-band Doppler radar : Paris Orly radar campaign results , 2007 .

[18]  David K. Rutishauser,et al.  Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident , 2013 .

[19]  Tao Wang,et al.  Study on the scattering characteristics of stable-stage wake vortices , 2009, 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009).

[20]  Tao Wang,et al.  Modeling the Dielectric Constant Distribution of Wake Vortices , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[21]  David C. Kring,et al.  Opto-Acoustic Tracking of Aircraft Wake Vortices , 2005 .

[22]  Hadi Wassaf,et al.  Atmospheric Effects on Microphone Array Analysis of Aircraft Vortex Sound , 2006 .

[23]  Z. Bao,et al.  Properties of high-resolution range profiles , 2002 .

[24]  S. Silver Microwave antenna theory and design , 1949 .

[25]  Thomas Gerz,et al.  Commercial aircraft wake vortices , 2002 .

[26]  Morris Handelsman,et al.  Electromagnetic Effects of Aircraft Wake-Active Feuillet Interaction , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Wayne A. Scales,et al.  Determination of aircraft wake vortex radar cross section due to coherent Bragg scatter from mixed atmospheric water vapor , 1999 .

[28]  R. Marshall,et al.  Wingtip generated wake vortices as radar targets , 1996, Proceedings of the 1996 IEEE National Radar Conference.

[29]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[30]  V. I. Tatarskii Wave Propagation in Turbulent Medium , 1961 .

[31]  Shunping Xiao,et al.  An improved Levin quadrature method for highly oscillatory integrals , 2010 .

[32]  Tao Wang,et al.  A universal solution to one-dimensional oscillatory integrals , 2008, Science in China Series F: Information Sciences.

[33]  Michael A. Temple,et al.  High range resolution (HRR) improvement using synthetic HRR processing and stepped-frequency polyphase coding , 2004 .

[34]  Zheng Bao,et al.  Radar HRRP Statistical Recognition: Parametric Model and Model Selection , 2008, IEEE Transactions on Signal Processing.

[35]  王涛,et al.  A rigorous criterion to identify the validity of the Born approximation , 2009 .