A Multiobjective Particle Swarm Optimizer for Constrained Optimization

Constraint handling techniques are mainly designed for evolutionary algorithms to solve constrained multiobjective optimization problems CMOPs. Most multiojective particle swarm optimization MOPSO designs adopt these existing constraint handling techniques to deal with CMOPs. In the proposed constrained MOPSO, information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and improve the quality of the optimal solution. This information is incorporated into the four main procedures of a standard MOPSO algorithm. The involved procedures include the updating of personal best archive based on the particles' Pareto ranks and their constraint violation values; the adoption of infeasible global best archives to store infeasible nondominated solutions; the adjustment of acceleration constants that depend on the personal bests' and selected global best's infeasibility and feasibility status; and the integration of personal bests' feasibility status to estimate the mutation rate in the mutation procedure. Simulation to investigate the proposed constrained MOPSO in solving the selected benchmark problems is conducted. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving most of the selected benchmark problems.

[1]  Gary G. Yen,et al.  PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[4]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[5]  Liu Zhiming,et al.  Solving Constrained Optimization via a Modified Genetic Particle Swarm Optimization , 2008, First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008).

[6]  T. T. Binh MOBES : A multiobjective evolution strategy for constrained optimization problems , 1997 .

[7]  Min Zhang,et al.  Infeasible Elitists and Stochastic Ranking Selection in Constrained Evolutionary Multi-objective Optimization , 2006, SEAL.

[8]  Rainer Laur,et al.  Constrained Single-Objective Optimization Using Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[9]  Tamás Vicsek,et al.  Statistical Properties of Community Dynamics in Large Social Networks , 2009, Int. J. Agent Technol. Syst..

[10]  R. A. Groeneveld,et al.  Practical Nonparametric Statistics (2nd ed). , 1981 .

[11]  Yu Zhang,et al.  History Sensitive Cascade Model , 2011, Int. J. Agent Technol. Syst..

[12]  A.F. Gomez-Skarmeta,et al.  An evolutionary algorithm for constrained multi-objective optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  Yuren Zhou,et al.  Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[15]  R. B. Patel,et al.  ALiSR: Agent Based Link Stability Aware Routing Protocol for Ad Hoc Networks , 2010, Int. J. Agent Technol. Syst..

[16]  Paulo Marques,et al.  Component Agent Systems: Building a Mobile Agent Architecture That You Can Reuse , 2007 .

[17]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[18]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[19]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[20]  Hong Lin Architectural Design of Multi-Agent Systems: Technologies and Techniques , 2007 .

[21]  Gary G. Yen,et al.  Constraint Handling in Multiobjective Evolutionary Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[22]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[23]  Pedro Isasi Viñuela,et al.  Editorial Special Issue: Computational Finance and Economics , 2009, IEEE Trans. Evol. Comput..

[24]  Gary G. Yen,et al.  A generic framework for constrained optimization using genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[25]  Goran Trajkovski An Imitation-Based Approach to Modeling Homogeneous Agents Societies , 2001, EPIA.

[26]  Gary G. Yen,et al.  Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[27]  Shapour Azarm,et al.  Constraint handling improvements for multiobjective genetic algorithms , 2002 .

[28]  Goran Trajkovski,et al.  Developments in Intelligent Agent Technologies and Multi-Agent Systems: Concepts and Applications , 2010 .

[29]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[30]  Virginia. Virginia Dignum . Dignum,et al.  Handbook of Research on Multi-Agent Systems - Semantics and Dynamics of Organizational Models , 2009, Handbook of Research on Multi-Agent Systems.

[31]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[32]  Haiyan Lu,et al.  Dynamic-objective particle swarm optimization for constrained optimization problems , 2006, J. Comb. Optim..

[33]  Ana L. C. Bazzan,et al.  Multiagent Learning on Traffic Lights Control , 2009, Multi-Agent Systems for Traffic and Transportation Engineering.

[34]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[35]  Alfredo Tirado-Ramos,et al.  Simulation of HIV Infection Propagation Networks: A Review of the State of the Art in Agent-Based Approaches , 2013, Int. J. Agent Technol. Syst..

[36]  Gary G. Yen,et al.  An Adaptive Penalty Formulation for Constrained Evolutionary Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[37]  C. Coello,et al.  Multiobjective optimization using a micro-genetic algorithm , 2001 .

[38]  R. Lyndon While,et al.  Multi-level Ranking for Constrained Multi-objective Evolutionary Optimisation , 2006, PPSN.

[39]  Mingyuan Zhang Theoretical and Practical Frameworks for Agent-Based Systems , 2012 .

[40]  Sandip Sen,et al.  Norm Emergence with Biased Agents , 2009, Int. J. Agent Technol. Syst..

[41]  Joseph Bullington,et al.  Agents and Social Interaction Insights from Social Psychology , 2010 .

[42]  Tetsuyuki Takahama,et al.  Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[43]  A. Oyama,et al.  New Constraint-Handling Method for Multi-Objective and Multi-Constraint Evolutionary Optimization , 2007 .

[44]  Goran Trajkovski,et al.  Handbook of Research on Agent-Based Societies: Social and Cultural Interactions , 2009 .

[45]  Isao Ono,et al.  Constraint-Handling Method for Multi-objective Function Optimization: Pareto Descent Repair Operator , 2007, EMO.

[46]  David Taniar,et al.  Mining Matrix Pattern from Mobile Users , 2006, Int. J. Intell. Inf. Technol..

[47]  Yun-ping Chen,et al.  A Master-Slave Particle Swarm Optimization Algorithm for Solving Constrained Optimization Problems , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[48]  S. Azarm,et al.  On improving multiobjective genetic algorithms for design optimization , 1999 .

[49]  Patrícia Augustin Jaques,et al.  Infering Emotions and Applying Affective Tactics for a Better Learning , 2008 .

[50]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[51]  Yang Gao,et al.  Distributed Artificial Intelligence: Second International Conference, DAI 2020, Nanjing, China, October 24–27, 2020, Proceedings , 2020, DAI.

[52]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[53]  Yuping Wang,et al.  A Novel Multi-objective PSO Algorithm for Constrained Optimization Problems , 2006, SEAL.

[54]  Xinghuo Yu,et al.  A multi-objective constraint-handling method with PSO algorithm for constrained engineering optimization problems , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[55]  Khaled Rasheed,et al.  Constrained Multi-objective Optimization Using Steady State Genetic Algorithms , 2003, GECCO.

[56]  Robert J. Hammell,et al.  Agent Interaction via Message-Based Belief Communication , 2009, Int. J. Agent Technol. Syst..

[57]  Yu Zhang,et al.  Simulating Cooperative Behaviors in Dynamic Networks , 2010, Int. J. Agent Technol. Syst..

[58]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[59]  Tapabrata Ray,et al.  An Evolutionary Algorithm for Constrained Bi-objective Optimization Using Radial Slots , 2005, KES.

[60]  Charles E. Knadler,et al.  An Agent-Based Model of the Spread of Devil Facial Tumor Disease in an Isolated Population of Tasmanian Devils , 2012, Int. J. Agent Technol. Syst..

[61]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[62]  Yuren Zhou,et al.  An Adaptive Tradeoff Model for Constrained Evolutionary Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[63]  Raman Paranjape,et al.  Multi-Agent Systems for Healthcare Simulation and Modeling: Applications for System Improvement , 2009 .

[64]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[65]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[66]  Wenjian Luo,et al.  A Hybrid of Differential Evolution and Genetic Algorithm for Constrained Multiobjective Optimization Problems , 2006, SEAL.

[67]  Jun Wu,et al.  Dynamic Crowding Distance?A New Diversity Maintenance Strategy for MOEAs , 2008, 2008 Fourth International Conference on Natural Computation.

[68]  Alan D. Christiansen,et al.  MOSES: A MULTIOBJECTIVE OPTIMIZATION TOOL FOR ENGINEERING DESIGN , 1999 .

[69]  Frank Dignum,et al.  A logic of agent organizations , 2012, Log. J. IGPL.

[70]  Alexander G. Madey Unmanned Aerial Vehicle Swarms: The Design and Evaluation of Command and Control Strategies using Agent-Based Modeling , 2013, Int. J. Agent Technol. Syst..