Branching on hyperplane methods for mixed integer linear and convex programming using adjoint lattices

We present branching-on-hyperplane methods for solving mixed integer linear and mixed integer convex programs. In particular, we formulate the problem of finding a good branching hyperplane using a novel concept of adjoint lattice. We also reformulate the problem of rounding a continuous solution to a mixed integer solution. A worst case complexity of a Lenstra-type algorithm is established using an approximate log-barrier center to obtain an ellipsoidal rounding of the feasible set. The results for the mixed integer convex programming also establish a complexity result for the mixed integer second order cone programming and mixed integer semidefinite programming feasibility problems as a special case. Our results motivate an alternative reformulation technique and a branching heuristic using a generalized (e.g., ellipsoidal) norm reduced basis available at the root node.

[1]  László Lovász,et al.  The Generalized Basis Reduction Algorithm , 1990, Math. Oper. Res..

[2]  Panos M. Pardalos,et al.  Interior Point Methods for Global Optimization , 1996 .

[3]  Leonid Khachiyan,et al.  On the complexity of approximating the maximal inscribed ellipsoid for a polytope , 1993, Math. Program..

[4]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[5]  Sanjay Mehrotra,et al.  An example to demonstrate the importance of using ellipsoidal norm in lattice basis reduction for branching on hyperplane algorithms , 2009 .

[6]  Arjen K. Lenstra,et al.  Market Split and Basis Reduction: Towards a Solution of the Cornue'jols-Dawande Instances , 2000, INFORMS J. Comput..

[7]  Yin Zhang,et al.  Computational Experience with Lenstra's Algorithm , 2002 .

[8]  Leonid Khachiyan,et al.  Rounding of Polytopes in the Real Number Model of Computation , 1996, Math. Oper. Res..

[9]  Sanjay Mehrotra,et al.  Experimental Results on Using General Disjunctions in Branch-and-Bound for General-Integer Linear Programs , 2001, Comput. Optim. Appl..

[10]  Pravin M. Vaidya,et al.  A new algorithm for minimizing convex functions over convex sets , 1996, Math. Program..

[11]  Laurence A. Wolsey,et al.  Non-standard approaches to integer programming , 2002, Discret. Appl. Math..

[12]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[13]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[14]  Arjen K. Lenstra,et al.  Hard Equality Constrained Integer Knapsacks , 2004, Math. Oper. Res..

[15]  Arjen K. Lenstra,et al.  Solving a System of Linear Diophantine Equations with Lower and Upper Bounds on the Variables , 2000, Math. Oper. Res..

[16]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[17]  Gábor Pataki,et al.  Column basis reduction and decomposable knapsack problems , 2008, Discret. Optim..

[18]  Arjen K. Lenstra,et al.  Solving a Linear Diophantine Equation with Lower and Upper Bounds on the Variables , 1998, IPCO.

[19]  Claus-Peter Schnorr,et al.  Segment LLL-Reduction of Lattice Bases , 2001, CaLC.

[20]  Panos M. Pardalos,et al.  Topics in Semidefinite and Interior-Point Methods , 1998 .

[21]  Sanjay Mehrotra,et al.  Segment LLL Reduction of Lattice Bases Using Modular Arithmetic , 2010, Algorithms.

[22]  Kurt M. Anstreicher,et al.  Towards a Practical Volumetric Cutting Plane Method for Convex Programming , 1998, SIAM J. Optim..

[23]  Alper Atamtürk,et al.  Cuts for Conic Mixed-Integer Programming , 2007, IPCO.

[24]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[25]  Sanjay Mehrotra,et al.  Finding an interior point in the optimal face of linear programs , 1993, Math. Program..

[26]  H. Scarf,et al.  A new implementation of the generalized basis reduction algorithm for convex integer programming , 1997 .

[27]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[28]  Yinyu Ye,et al.  On the finite convergence of interior-point algorithms for linear programming , 1992, Math. Program..

[29]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[30]  Gérard Cornuéjols,et al.  Branching on general disjunctions , 2011, Math. Program..

[31]  A. Mahajan,et al.  Experiments with Branching using General Disjunctions , 2009 .

[32]  V. Milman,et al.  New volume ratio properties for convex symmetric bodies in ℝn , 1987 .

[33]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[34]  Kurt M. Anstreicher,et al.  Ellipsoidal Approximations of Convex Sets Based on the Volumetric Barrier , 1999, Math. Oper. Res..

[35]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .

[36]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[37]  David Shallcross,et al.  An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming , 1993, INFORMS J. Comput..

[38]  Gérard Cornuéjols,et al.  Improved strategies for branching on general disjunctions , 2011, Math. Program..

[39]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.