Classical Communication Over a Quantum Interference Channel

Calculating the capacity of interference channels is a notorious open problem in classical information theory. Such channels have two senders and two receivers, and each sender would like to communicate with a partner receiver. The capacity of such channels is known exactly in the settings of “very strong” and “strong” interference, while the Han-Kobayashi coding strategy gives the best known achievable rate region in the general case. Here, we introduce and study the quantum interference channel, a natural generalization of the interference channel to the setting of quantum information theory. We restrict ourselves for the most part to channels with two classical inputs and two quantum outputs in order to simplify the presentation of our results (though generalizations of our results to channels with quantum inputs are straightforward). We are able to determine the exact classical capacity of this channel in the settings of “very strong” and “strong” interference, by exploiting Winter's successive decoding strategy and a novel two-sender quantum simultaneous decoder, respectively. We provide a proof that a Han-Kobayashi strategy is achievable with Holevo information rates, up to a conjecture regarding the existence of a three-sender quantum simultaneous decoder. This conjecture holds for a special class of quantum multiple-access channels with average output states that commute, and we discuss some other variations of the conjecture that hold. Finally, we detail a connection between the quantum interference channel and prior work on the capacity of bipartite unitary gates.

[1]  Andreas J. Winter The capacity of the quantum multiple-access channel , 2001, IEEE Trans. Inf. Theory.

[2]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[3]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[4]  Nilanjana Datta,et al.  A quantum version of Feinstein's Theorem and its application to channel coding , 2006, 2006 IEEE International Symposium on Information Theory.

[5]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[6]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.

[7]  Andreas J. Winter,et al.  Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.

[8]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[9]  Debbie W. Leung,et al.  An exponential separation between the entanglement and communication capacities of a bipartite unitary interaction , 2008, 2008 IEEE Information Theory Workshop.

[10]  林 正人 Quantum information : an introduction , 2006 .

[11]  Peter W. Shor,et al.  Time Reversal and Exchange Symmetries of Unitary Gate Capacities , 2010, IEEE Transactions on Information Theory.

[12]  Ke Li,et al.  A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[13]  Nicolas Dutil,et al.  Multiparty quantum protocols for assisted entanglement distillation , 2011, 1105.4657.

[14]  Aram Harrow Coherent communication of classical messages. , 2004, Physical review letters.

[15]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[16]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[17]  Andreas J. Winter,et al.  Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1 , 2008, ArXiv.

[18]  Mark M. Wilde,et al.  Quantum Information Theory , 2013 .

[19]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[20]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[21]  A. Holevo Coding Theorems for Quantum Channels , 1998, quant-ph/9809023.

[22]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[23]  N. Datta,et al.  Quantum Coding Theorems for Arbitrary Sources, Channels and Entanglement Resources , 2006, quant-ph/0610003.

[24]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[25]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[26]  John R. Pierce,et al.  The early days of information theory , 1973, IEEE Trans. Inf. Theory.

[27]  R. Ahlswede The Capacity Region of a Channel with Two Senders and Two Receivers , 1974 .

[28]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  Debbie W. Leung,et al.  On the capacities of bipartite Hamiltonians and unitary gates , 2002, IEEE Trans. Inf. Theory.

[31]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[32]  Mehul Motani,et al.  On The Han–Kobayashi Region for theInterference Channel , 2008, IEEE Transactions on Information Theory.

[33]  Eren Saso Successive cancellation for cyclic interference channels , 2008 .

[34]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[35]  Te Sun Han,et al.  A new achievable rate region for the interference channel , 1981, IEEE Trans. Inf. Theory.

[36]  Masahito Hayashi,et al.  An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.

[37]  Alexander Semenovich Holevo,et al.  Quantum coding theorems , 1998 .

[38]  Tomohiro Ogawa,et al.  Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.

[39]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[41]  Andreas J. Winter,et al.  The Quantum Capacity With Symmetric Side Channels , 2008, IEEE Transactions on Information Theory.

[42]  Hiroshi Sato,et al.  Two-user communication channels , 1977, IEEE Trans. Inf. Theory.

[43]  K. - A Comparison of Two Achievable Rate Regions for the Interference Channel , 2006 .

[44]  Eren Sasoglu Successive cancellation for cyclic interference channels , 2008, 2008 IEEE Information Theory Workshop.

[45]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[46]  Seth Lloyd,et al.  Achieving the Holevo bound via sequential measurements , 2010, 1012.0386.

[47]  Philip A. Whiting,et al.  Rate-splitting multiple access for discrete memoryless channels , 2001, IEEE Trans. Inf. Theory.

[48]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[49]  Mark M. Wilde,et al.  Sequential, successive, and simultaneous decoders for entanglement-assisted classical communication , 2011, Quantum Inf. Process..

[50]  Aydano B. Carleial,et al.  A case where interference does not reduce capacity (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[51]  Pranab Sen,et al.  Achieving the Han-Kobayashi inner bound for the quantum interference channel , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[52]  G. Kramer,et al.  Review of Rate Regions for Interference Channels , 2006, 2006 International Zurich Seminar on Communications.

[53]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[54]  Hiroshi Sato,et al.  The capacity of the Gaussian interference channel under strong interference , 1981, IEEE Trans. Inf. Theory.

[55]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[56]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[57]  Te Sun Han,et al.  An Information-Spectrum Approach to Capacity Theorems for the General Multiple-Access Channel , 1998, IEEE Trans. Inf. Theory.

[58]  Patrick P. Bergmans,et al.  Random coding theorem for broadcast channels with degraded components , 1973, IEEE Trans. Inf. Theory.

[59]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[60]  Amiel Feinstein,et al.  A new basic theorem of information theory , 1954, Trans. IRE Prof. Group Inf. Theory.

[61]  Jacob Wolfowitz,et al.  Multiple Access Channels , 1978 .

[62]  Igor Devetak,et al.  Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[63]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[64]  Debbie W. Leung,et al.  Bidirectional coherent classical communication , 2005, Quantum Inf. Comput..

[65]  Abbas El Gamal,et al.  Lecture Notes on Network Information Theory , 2010, ArXiv.

[66]  F. Brandão,et al.  A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.

[67]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[68]  S. Lloyd,et al.  Classical capacity of the lossy bosonic channel: the exact solution. , 2003, Physical review letters.

[69]  Hiroshi Sato On degraded Gaussian two-user channels (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[70]  J. Deuschel,et al.  A Quantum Version of Sanov's Theorem , 2004, quant-ph/0412157.

[71]  Hiroshi Sato,et al.  An outer bound to the capacity region of broadcast channels (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[72]  Sergio Verdú,et al.  Fifty Years of Shannon Theory , 1998, IEEE Trans. Inf. Theory.

[73]  Claude E. Shannon,et al.  Two-way Communication Channels , 1961 .

[74]  Nilanjana Datta,et al.  Beyond i.i.d. in Quantum Information Theory , 2006, 2006 IEEE International Symposium on Information Theory.

[75]  Kingo Kobayashi A Further Consideration on the HK and the CMG regions for the Interference Channel , 2007 .

[76]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[77]  Gerhard Kramer,et al.  Outer bounds on the capacity of Gaussian interference channels , 2004, IEEE Transactions on Information Theory.