Extending partial representations of subclasses of chordal graphs

Chordal graphs are intersection graphs of subtrees of a tree T. We investigate the complexity of the partial representation extension problem for chordal graphs. A partial representation specifies a tree T ' and some pre-drawn subtrees of T ' . It asks whether it is possible to construct a representation inside a modified tree T which extends the partial representation (i.e., keeps the pre-drawn subtrees unchanged).We consider four modifications of T ' leading to vastly different problems: (i) T = T ' , (ii) T is a subdivision of T ' , (iii) T is a supergraph of T ' , and (iv) T ' is a topological minor of T. In some cases, it is interesting to consider the complexity even when just T ' is given and no subtree is pre-drawn. Also, we consider three well-known subclasses of chordal graphs: Proper interval graphs, interval graphs and path graphs. We give an almost complete complexity characterization. We further study the parametrized complexity of the problems when parametrized by the number of pre-drawn subtrees, the number of components of the input graph G and the size of the tree T ' .We describe an interesting relation with integer partition problems. The problem 3-Partition is used for all NP -completeness reductions. When the space in T ' is limited, partial representation extension of proper interval graphs is "equivalent" to the BinPacking?problem.

[1]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[2]  Ignaz Rutter,et al.  Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems , 2013, SODA.

[3]  David S. Johnson,et al.  Complexity Results for Multiprocessor Scheduling under Resource Constraints , 1975, SIAM J. Comput..

[4]  Stephan Olariu,et al.  The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..

[5]  Yota Otachi,et al.  Linear-time Algorithm for Partial Representation Extension of Interval Graphs , 2013, ArXiv.

[6]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[7]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[8]  Pavel Klavík,et al.  Extending Partial Representations of Interval Graphs , 2011, TAMC.

[9]  Z. Tuza,et al.  PRECOLORING EXTENSION. II. GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS , 1993 .

[10]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[11]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[12]  Klaus Jansen,et al.  Bin packing with fixed number of bins revisited , 2013, J. Comput. Syst. Sci..

[13]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[14]  Martin Charles Golumbic Not So Perfect Graphs , 2004 .

[15]  Pavel Klavík,et al.  Extending Partial Representations of Circle Graphs , 2013, Graph Drawing.

[16]  Alejandro A. Schäffer,et al.  A Faster Algorithm to Recognize Undirected Path Graphs , 1993, Discret. Appl. Math..

[17]  Jirí Fiala NP completeness of the edge precoloring extension problem on bipartite graphs , 2003, J. Graph Theory.

[18]  Xiaotie Deng,et al.  Linear-Time Representation Algorithms for Proper Circular-Arc Graphs and Proper Interval Graphs , 1996, SIAM J. Comput..

[19]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[20]  Yota Otachi,et al.  Extending Partial Representations of Proper and Unit Interval Graphs , 2016, Algorithmica.

[21]  Pavel Klavík,et al.  Minimal Obstructions for Partial Representations of Interval Graphs , 2014, ISAAC.

[22]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[23]  Anna Lubiw,et al.  The Simultaneous Representation Problem for Chordal, Comparability and Permutation Graphs , 2012, J. Graph Algorithms Appl..

[24]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[25]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[26]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[27]  Yota Otachi,et al.  Bounded Representations of Interval and Proper Interval Graphs , 2013, ISAAC.

[28]  Yota Otachi,et al.  Extending Partial Representations of Subclasses of Chordal Graphs , 2012, ISAAC.

[29]  Pavel Klavík,et al.  Extending Partial Representations of Function Graphs and Permutation Graphs , 2012, ESA.

[30]  Fanica Gavril,et al.  A recognition algorithm for the intersection graphs of paths in trees , 1978, Discret. Math..

[31]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[32]  Yota Otachi,et al.  Extending Partial Representations of Proper and Unit Interval Graphs , 2012, Algorithmica.