Fundamental limitations to key distillation from Gaussian states with Gaussian operations

We establish fundamental upper bounds on the amount of secret key that can be extracted from continuous variable quantum Gaussian states by using only local Gaussian operations, local classical processing, and public communication. For one-way communication, we prove that the key is bounded by the Renyi-$2$ Gaussian entanglement of formation $E_{F,2}^{\mathrm{\scriptscriptstyle G}}$, with the inequality being saturated for pure Gaussian states. The same is true if two-way public communication is allowed but Alice and Bob employ protocols that start with destructive local Gaussian measurements. In the most general setting of two-way communication and arbitrary interactive protocols, we argue that $2 E_{F,2}^{\mathrm{\scriptscriptstyle G}}$ is still a bound on the extractable key, although we conjecture that the factor of $2$ is superfluous. Finally, for a wide class of Gaussian states that includes all two-mode states, we prove a recently proposed conjecture on the equality between $E_{F,2}^{\mathrm{\scriptscriptstyle G}}$ and the Gaussian intrinsic entanglement, thus endowing both measures with a more solid operational meaning.

[1]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[2]  Michal Horodecki,et al.  Unifying Classical and Quantum Key Distillation , 2007, TCC.

[3]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[4]  Jr.,et al.  Gaussian intrinsic entanglement: An entanglement quantifier based on secret correlations , 2015, 1611.00669.

[5]  N. Cerf,et al.  Quantum information with optical continuous variables: from Bell tests to key distribution , 2007 .

[6]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[7]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[8]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[9]  W. Rudin Principles of mathematical analysis , 1964 .

[10]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[11]  T. Ralph,et al.  Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[12]  Gerardo Adesso,et al.  Extendibility of Bosonic Gaussian States. , 2019, Physical review letters.

[13]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[14]  Philip Walther,et al.  Continuous‐Variable Quantum Key Distribution with Gaussian Modulation—The Theory of Practical Implementations , 2017, Advanced Quantum Technologies.

[15]  Andreas J. Winter,et al.  Secret, public and quantum correlation cost of triples of random variables , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[16]  Krishna Kumar Sabapathy,et al.  Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels , 2016, 1604.07859.

[17]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[18]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[19]  Mark M. Wilde Optimal uniform continuity bound for conditional entropy of classical–quantum states , 2020, Quantum Inf. Process..

[20]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[21]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[22]  J. Eisert,et al.  Limitations of quantum computing with Gaussian cluster states , 2010, 1004.0081.

[23]  G. Giedke,et al.  Gaussian entanglement of formation , 2004 .

[24]  A. S. Holevo,et al.  The information capacity of entanglement-assisted continuous variable quantum measurement , 2020 .

[25]  Carles Rodó,et al.  Efficiency in Quantum Key Distribution Protocols using entangled Gaussian states , 2010, 1005.2291.

[26]  Nicolas Gisin,et al.  Linking Classical and Quantum Key Agreement: Is There a Classical Analog to Bound Entanglement? , 2002, Algorithmica.

[27]  Ueli Maurer,et al.  Unconditionally Secure Key Agreement and the Intrinsic Conditional Information , 1999, IEEE Trans. Inf. Theory.

[28]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[29]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[30]  John Preskill,et al.  Secure quantum key distribution using squeezed states , 2001 .

[31]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[32]  Mark M. Wilde,et al.  Rényi relative entropies of quantum Gaussian states , 2017, Journal of Mathematical Physics.

[33]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[34]  Eleni Diamanti,et al.  Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations , 2015, Entropy.

[35]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[36]  Alberto Barchielli,et al.  Instruments and mutual entropies in quantum information , 2004 .

[37]  Graeme Smith,et al.  Useful States and Entanglement Distillation , 2017, IEEE Transactions on Information Theory.

[38]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[39]  M. Hillery Quantum cryptography with squeezed states , 1999, quant-ph/9909006.

[40]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[41]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[42]  Karsten Danzmann,et al.  Observation of squeezed light with 10-dB quantum-noise reduction. , 2007, Physical review letters.

[43]  Samuel L. Braunstein,et al.  Theory of channel simulation and bounds for private communication , 2017, Quantum Science and Technology.

[44]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Ueli Maurer,et al.  Small accessible quantum information does not imply security. , 2007, Physical review letters.

[46]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[47]  Gerd Leuchs,et al.  30 years of squeezed light generation , 2015, 1511.03250.

[48]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[49]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[50]  Andreas J. Winter,et al.  The Private and Public Correlation Cost of Three Random Variables With Collaboration , 2014, IEEE Transactions on Information Theory.

[51]  Ludovico Lami,et al.  All phase-space linear bosonic channels are approximately Gaussian dilatable , 2018, New Journal of Physics.

[52]  T. H. Chan,et al.  Balanced information inequalities , 2003, IEEE Trans. Inf. Theory.

[53]  J. Klauder The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers , 1960 .

[54]  Gerardo Adesso,et al.  Assisted concentration of Gaussian resources , 2019 .

[55]  Gerardo Adesso,et al.  Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations. , 2016, Physical review letters.

[56]  D. Stoler Equivalence classes of minimum-uncertainty packets. ii , 1970 .

[57]  Renato Renner,et al.  New Bounds in Secret-Key Agreement: The Gap between Formation and Secrecy Extraction , 2003, EUROCRYPT.

[58]  Antonio Acin,et al.  Gaussian Operations and Privacy , 2005 .

[59]  Graeme Smith,et al.  A Tight Uniform Continuity Bound for Equivocation , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[60]  J. Ignacio Cirac,et al.  Entanglement transformations of pure Gaussian states , 2003, Quantum Inf. Comput..

[61]  Se-Wan Ji,et al.  Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture , 2014, 1411.0437.

[62]  Karsten Danzmann,et al.  Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.

[63]  Gerardo Adesso,et al.  From Log-Determinant Inequalities to Gaussian Entanglement via Recoverability Theory , 2017, IEEE Transactions on Information Theory.

[64]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[65]  J I Cirac,et al.  Quantum key distillation from Gaussian states by Gaussian operations. , 2005, Physical review letters.

[66]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[67]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[68]  F. Illuminati,et al.  Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states , 2005, quant-ph/0506124.

[69]  Marcos Curty,et al.  Upper bound on the secret key rate distillable from effective quantum correlations with imperfect detectors , 2006 .

[70]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[71]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[72]  J. Collier Intrinsic Information , 1990 .

[73]  M. Horodecki,et al.  The entanglement of purification , 2002, quant-ph/0202044.

[74]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[75]  Gerardo Adesso,et al.  Gaussian quantum resource theories , 2018, Physical Review A.

[76]  Matthias Christandl,et al.  Uncertainty, monogamy, and locking of quantum correlations , 2005, IEEE Transactions on Information Theory.

[77]  Timothy C. Ralph,et al.  Simulation of Gaussian channels via teleportation and error correction of Gaussian states , 2018, Physical Review A.

[78]  Nicolas Gisin,et al.  Linking Classical and Quantum Key Agreement: Is There "Bound Information"? , 2000, CRYPTO.

[79]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[80]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[81]  M. Reid Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations , 1999, quant-ph/9909030.

[82]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[83]  N. Cerf,et al.  Quantum distribution of Gaussian keys using squeezed states , 2000, quant-ph/0008058.

[84]  Ladislav Mivsta,et al.  Gaussian intrinsic entanglement for states with partial minimum uncertainty , 2017, 1710.10809.

[85]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[86]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[87]  Renato Renner,et al.  A property of the intrinsic mutual information , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[88]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[89]  Nicolas J Cerf,et al.  No-go theorem for gaussian quantum error correction. , 2008, Physical review letters.

[90]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[91]  Ladislav Mišta,et al.  Gaussian Intrinsic Entanglement. , 2016, Physical review letters.

[92]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[93]  Andreas J. Winter,et al.  Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.

[94]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[95]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[96]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[97]  Robert R. Tucci Quantum Entanglement and Conditional Information Transmission , 1999 .

[98]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[99]  S. Wolf,et al.  Quantum Cryptography on Noisy Channels: Quantum versus Classical Key-Agreement Protocols , 1999, quant-ph/9902048.

[100]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[101]  R. Renner,et al.  Bound Information: The Classical Analog to Bound Quantum Entanglemen , 2001 .

[102]  Roman Schnabel,et al.  Squeezed states of light and their applications in laser interferometers , 2016, 1611.03986.

[103]  Mertz,et al.  Observation of squeezed states generated by four-wave mixing in an optical cavity. , 1985, Physical review letters.

[104]  A. Serafini,et al.  Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2. , 2012, Physical review letters.

[105]  Davide Girolami,et al.  Measurement-induced disturbances and nonclassical correlations of Gaussian states , 2010, 1012.4302.

[106]  Raúl García-Patrón,et al.  Continuous-variable quantum key distribution protocols over noisy channels. , 2008, Physical review letters.

[107]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.