Microclimate and development of 'Conilon' coffee intercropped with rubber trees

The objective of this work was to evaluate the influence of intercropping 'Conilon' coffee (Coffea canephora) with rubber trees on coffee tree microclimate, nutrition, growth, and yield. Rubber trees were planted in two double rows 33 m apart, with 4x2.3 m spacing between plants. Treatments consisted of the distances from the coffee plants to the rubber trees: 3, 6, 9, 12, and 15 m. Measurements of atmospheric variables (temperature, irradiance, and relative humidity), leaf nutrient concentration, internode length of plagiotropic and orthotropic branches, individual leaf area, chlorophyll content, and yield were performed. Intercropping promotes changes in the microclimatic conditions of coffee plants close to rubber trees, with reduction of temperature and irradiance level and increase in air relative humidity. The proximity of the coffee tree to the rubber trees promotes the elongation of the plagiotropic and orthotropic branches and increases the individual leaf area; however, it does not affect leaf concentrations of N, K, Mg, Fe, Zn, and B in 'Conilon' coffee and does not have a negative impact on yield.

[1]  F. Damatta,et al.  Combined effects of elevated [CO2] and high temperature on leaf mineral balance in Coffea spp. plants , 2014, Climatic Change.

[2]  F. Damatta,et al.  Cold impact and acclimation response of Coffea spp. plants , 2014, Theoretical and Experimental Plant Physiology.

[3]  F. Partelli,et al.  Seasonal Vegetative Growth in Genotypes of Coffea canephora, as Related to Climatic Factors , 2013 .

[4]  F. Lidon,et al.  Cold-induced changes in mineral content in leaves of Coffea spp. Identification of descriptors for tolerance assessment , 2013, Biologia Plantarum.

[5]  J. Graaff,et al.  Strategies and economics of farming systems with coffee in the Atlantic Rainforest Biome , 2011, Agroforestry Systems.

[6]  J. Pezzopane,et al.  Alterações microclimáticas em cultivo de café conilon arborizado com coqueiro-anão-verde , 2011 .

[7]  F. Partelli,et al.  Seasonal vegetative growth of different age branches of conilon coffee tree , 2010 .

[8]  J. Pezzopane,et al.  Zoneamento de risco climático para a cultura do café Conilon no Estado do Espírito Santo , 2010 .

[9]  Philippe Vaast,et al.  Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica , 2010, Agroforestry Systems.

[10]  P. C. Cavatte,et al.  Phenotypic plasticity in response to light in the coffee tree , 2009 .

[11]  P. Vaast,et al.  Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels , 2009, Trees.

[12]  J. Pezzopane,et al.  Radiação fotossinteticamente ativa em cultivo de café conilon arborizado com coqueiro anão-verde. , 2009 .

[13]  H. Leite,et al.  Accumulation of Macronutrients for the Conilon Coffee Tree , 2007 .

[14]  Helio Garcia Leite,et al.  ACÚMULO DE B, CU, FE, MN E ZN PELO CAFEEIRO CONILON , 2007 .

[15]  Brenda B. Lin,et al.  Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture , 2007 .

[16]  Ricardo Henrique Silva Santos,et al.  Análise comparativa das características da serrapilheira e do solo em cafezais (Coffea arabica L.) cultivados em sistema agroflorestal e em monocultura, na Zona da Mata MG , 2007 .

[17]  L. A. Gallo,et al.  Assimilação do carbono por plantas de cafeeiro (Coffea arabica L var. obatã) crescendo a pleno sol e com sombreamento parcial , 2007 .

[18]  F. Partelli,et al.  ESTIMATIVA DA ÁREA FOLIAR DO CAFEEIRO CONILON A PARTIR DO COMPRIMENTO DA FOLHA/ ESTIMATIVE OF LEAF FOLIAR AREA OF COFFEA CANEPHORA BASED ON LEAF LENGTH , 2006 .

[19]  J. Costa,et al.  Cultivo orgânico de cultivares de café a pleno sol e sombreado , 2006 .

[20]  C. Prado,et al.  CARBON GAIN IN COFFEA ARABICA DURING CLEAR AND CLOUDY DAYS IN THE WET SEASON , 2006, Experimental Agriculture.

[21]  José C. Ramalho,et al.  Impacts of drought and temperature stress on coffee physiology and production: a review , 2006 .

[22]  L. H. C. Anjos,et al.  Sistema Brasileiro de Classificação de Solos. , 2006 .

[23]  Heverly Morais,et al.  Modifications on leaf anatomy of Coffea arabica caused by shade of pigeonpea (Cajanus cajan) , 2004 .

[24]  K. Cao,et al.  Photosynthetic Characteristics, Dark Respiration, and Leaf Mass Per Unit Area in Seedlings of Four Tropical Tree Species Grown Under Three Irradiances , 2004, Photosynthetica.

[25]  F. Damatta,et al.  Ecophysiological constraints on the production of shaded and unshaded coffee: a review. , 2004 .

[26]  D. C. Morgan,et al.  A systematic relationship between phytochrome-controlled development and species habitat, for plants grown in simulated natural radiation , 2004, Planta.

[27]  A. M. Ribeiro,et al.  Características fisiológicas e de crescimento de cafeeiro sombreado com guandu e cultivado a pleno sol , 2003 .

[28]  C. Stirling,et al.  Growth, photosynthetic performance and shade adaptation of rubber (Hevea brasiliensis) grown in natural shade. , 2003, Tree physiology.

[29]  J. Ramalho,et al.  Nitrogen dependent changes in antioxidant system and in fatty acid composition of chloroplast membranes from Coffea arabica L. plants submitted to high irradiance , 1998 .