Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO3 antiferroelectric ceramics

[1]  Juan Du,et al.  Achieving high-energy storage performance in 0.67Bi1Sm FeO3-0.33BaTiO3 lead-free relaxor ferroelectric ceramics , 2020, Ceramics International.

[2]  J. Zhai,et al.  High energy storage performance and fast discharging speed in dense 0.7Bi0.5K0.5TiO3-0.3SrTiO3 ceramics via a novel rolling technology , 2020 .

[3]  C. Mu,et al.  Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature , 2020 .

[4]  Y. Pu,et al.  Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability , 2020 .

[5]  Fangping Zhuo,et al.  Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour , 2019 .

[6]  Fangping Zhuo,et al.  Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: insight into the origin of antiferroelectricity , 2019, Journal of Materials Chemistry A.

[7]  Yaodong Yang,et al.  Excellent Energy Storage Properties Achieved in BaTiO3-based Lead-Free Relaxor Ferroelectric Ceramics via Domain Engineering on the Nanoscale. , 2019, ACS applied materials & interfaces.

[8]  Yuezhou Wei,et al.  Lead‐free Ag 1−3 x La x NbO 3 antiferroelectric ceramics with high‐energy storage density and efficiency , 2019, Journal of the American Ceramic Society.

[9]  Yeonwoong Jung,et al.  Recent trends in transition metal dichalcogenide based supercapacitor electrodes , 2019, Nanoscale Horizons.

[10]  K. Han,et al.  Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density , 2019, Journal of Materials Chemistry A.

[11]  S. Dou,et al.  Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability , 2019, Chemical Engineering Journal.

[12]  F. Gao,et al.  Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties , 2019, Nano Energy.

[13]  Yuezhou Wei,et al.  Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics , 2019, Ceramics International.

[14]  Genshui Wang,et al.  Significantly enhanced energy storage performance of rare-earth-modified silver niobate lead-free antiferroelectric ceramics via local chemical pressure tailoring , 2019, Journal of Materials Chemistry C.

[15]  X. Dong,et al.  Novel Sodium Niobate-Based Lead-Free Ceramics as New Environment-Friendly Energy Storage Materials with High Energy Density, High Power Density, and Excellent Stability , 2018, ACS Sustainable Chemistry & Engineering.

[16]  J. Zhai,et al.  Exploring novel bismuth-based materials for energy storage applications , 2018 .

[17]  Zhicheng Zhang,et al.  Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride , 2018 .

[18]  X. Tan,et al.  Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density , 2018 .

[19]  X. Dong,et al.  High energy storage properties of (Ni 1/3 Nb 2/3 ) 4+ complex-ion modified (Ba 0.85 Ca 0.15 )(Zr 0.10 Ti 0.90 )O 3 ceramics , 2018 .

[20]  Jingfeng Li,et al.  Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping. , 2018, ACS applied materials & interfaces.

[21]  Jihua Zhang,et al.  Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics , 2017 .

[22]  Zhuo Xu,et al.  Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage , 2017 .

[23]  Fei Yan,et al.  Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage , 2017 .

[24]  C. Courtois,et al.  A high dielectric composite for energy storage application , 2017 .

[25]  J. Íñiguez,et al.  Designing lead-free antiferroelectrics for energy storage , 2017, Nature Communications.

[26]  Zhuo Xu,et al.  Effect of Ba-dopant on dielectric and energy storage properties of PLZST antiferroelectric ceramics , 2017 .

[27]  Zhuo Xu,et al.  High energy density in silver niobate ceramics , 2016 .

[28]  Jingfeng Li,et al.  Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification , 2016 .

[29]  Chao He,et al.  Structure and properties of (NaxLaxPb1 − 2x)(Lu1/2Nb1/2)O3 antiferroelectric ceramics , 2016 .

[30]  J. Son,et al.  Ferroelectric domain switching kinetics of a lead-free AgNbO3 thin film on glass substrate , 2015 .

[31]  R. Zuo,et al.  Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 Lead-Free Relaxor Ferroelectric Ceramics for Energy-Storage Capacitors , 2015 .

[32]  Qi Zhang,et al.  Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases. , 2015, ACS applied materials & interfaces.

[33]  C. Randall,et al.  Lead-free antiferroelectric: xCaZrO3-(1 -x)NaNbO3 system (0 ≤x≤ 0.10). , 2015, Dalton transactions.

[34]  Xiaoyong Wei,et al.  Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage , 2014 .

[35]  H. Yan,et al.  Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics , 2013 .

[36]  Xihong Hao,et al.  preparation and energy-storage performance of plzt antiferroelectric thick films via sol-gel method , 2013 .

[37]  Xihong Hao,et al.  Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films , 2013 .

[38]  Dunmin Lin,et al.  Effects of La-doping on microstructure, dielectric and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics , 2013, Journal of Materials Science: Materials in Electronics.

[39]  Pooi See Lee,et al.  Leakage conduction mechanism of amorphous Lu2O3 high-k dielectric films fabricated by pulsed laser ablation , 2007 .

[40]  Pooi See Lee,et al.  Rare-earth based ultra-thin Lu2O3 for high-k dielectrics , 2007 .

[41]  B. Lee,et al.  Effects of complex doping on microstructural and electrical properties of PZT ceramics , 2006 .

[42]  G. Tallarida,et al.  Atomic-layer deposition of Lu2O3 , 2004 .

[43]  H. Iwai,et al.  Electrical Characteristics for Lu2O3 Thin Films Fabricated by E-Beam Deposition Method , 2004 .

[44]  R. Brook,et al.  The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3 , 1988 .

[45]  R. Brook,et al.  The effect of lanthanide contraction on grain growth in lanthanide-doped BaTiO3 , 1988 .

[46]  Jing Wang,et al.  High Energy Storage Properties of (Zn1/3nb2/3)4+ Complex-Ion Modified (Ba0.85ca0.15)(Zr0.10ti0.90)O3 Ceramics , 2022, SSRN Electronic Journal.

[47]  Y. Pu,et al.  High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics , 2020 .