ß Federation of European Neuroscience Societies Transcranial magnetic stimulation of the human frontal eye ®eld facilitates visual awareness

[1]  Á. Pascual-Leone,et al.  Modulation of intracortical neuronal circuits in human hand motor area by digit stimulation , 2003, Experimental Brain Research.

[2]  T. Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye Field: Effects on Visual Perception and Attention , 2002, Journal of Cognitive Neuroscience.

[3]  Jeffrey D Schall,et al.  The neural selection and control of saccades by the frontal eye field. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  J B Poline,et al.  Cerebral mechanisms of word masking and unconscious repetition priming , 2001, Nature Neuroscience.

[5]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[6]  Victor A. F. Lamme Blindsight: the role of feedforward and feedback corticocortical connections. , 2001, Acta psychologica.

[7]  R. Rafal,et al.  Neural fate of seen and unseen faces in visuospatial neglect: A combined event-related functional MRI and event-related potential study , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M Corbetta,et al.  Multiple neural correlates of detection in the human brain. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Gold,et al.  Neural computations that underlie decisions about sensory stimuli , 2001, Trends in Cognitive Sciences.

[11]  J. Enns,et al.  What’s new in visual masking? , 2000, Trends in Cognitive Sciences.

[12]  J. Schall,et al.  Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex , 2000, Vision Research.

[13]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[14]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[15]  R H Carpenter,et al.  Visual selection: Neurons that make up their minds , 1999, Current Biology.

[16]  C M Michel,et al.  Visual activity in the human frontal eye field. , 1999, Neuroreport.

[17]  Jeffrey D. Schall,et al.  The detection of visual signals by macaque frontal eye field during masking , 1999, Nature Neuroscience.

[18]  G. Rees,et al.  Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Vighetto,et al.  A selective imaging of tinnitus. , 1999, Neuroreport.

[20]  A. Cowey,et al.  The role of the parietal cortex in visual attention—hemispheric asymmetries and the effects of learning: a magnetic stimulation study , 1998, Neuropsychologia.

[21]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[22]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[23]  M. Livingstone,et al.  Neuronal correlates of visibility and invisibility in the primate visual system , 1998, Nature Neuroscience.

[24]  A. Treisman,et al.  Perceiving visually presented objets: recognition, awareness, and modularity , 1998, Current Opinion in Neurobiology.

[25]  C. Koch,et al.  Consciousness and neuroscience. , 1998, Cerebral cortex.

[26]  L Weiskrantz,et al.  Pattern of neuronal activity associated with conscious and unconscious processing of visual signals. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G. Thickbroom,et al.  Transcranial magnetic stimulation of the human frontal eye field , 1996, Journal of the Neurological Sciences.

[28]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[29]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[30]  J. Schall,et al.  Countermanding saccades in macaque , 1995, Visual Neuroscience.

[31]  V. S. Ramachandran,et al.  Visual attention modulates metacontrast masking , 1995, Nature.

[32]  M. Hallett,et al.  Human motor evoked responses to paired transcranial magnetic stimuli. , 1992, Electroencephalography and clinical neurophysiology.

[33]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[34]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[35]  A. Cowey,et al.  Visual field defects after frontal eye-field lesions in monkeys. , 1971, Brain research.

[36]  C. W. Hess,et al.  Transcranial stimulation of the human frontal eye field by magnetic pulses , 2004, Experimental Brain Research.

[37]  G. V. Simpson,et al.  Flow of activation from V1 to frontal cortex in humans , 2001, Experimental Brain Research.

[38]  B Jouve,et al.  A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. , 1998, Cerebral cortex.

[39]  G. Mangun,et al.  Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex , 1997, Human brain mapping.

[40]  J. Schall Visuomotor Areas of the Frontal Lobe , 1997 .

[41]  A. Berthoz,et al.  Neural Basis of Decision in Perception and in the Control of Movement , 1996 .

[42]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[43]  Bruno G. Breitmeyer,et al.  Visual masking : an integrative approach , 1984 .

[44]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .