Solution structure of the Equine Infectious Anemia Virus p9 protein: a rationalization of its different ALIX binding requirements compared to the analogous HIV-p6 protein

[1]  J. Martin-Serrano,et al.  Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release , 2008, Proceedings of the National Academy of Sciences.

[2]  J. Martin-Serrano The Role of Ubiquitin in Retroviral Egress , 2007, Traffic.

[3]  J. Martin-Serrano,et al.  Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery , 2007, Science.

[4]  F. Kirchhoff,et al.  Proline 35 of Human Immunodeficiency Virus Type 1 (HIV-1) Vpr Regulates the Integrity of the N-Terminal Helix and the Incorporation of Vpr into Virus Particles and Supports the Replication of R5-Tropic HIV-1 in Human Lymphoid Tissue Ex Vivo , 2007, Journal of Virology.

[5]  J. Hurley,et al.  Molecular Architecture and Functional Model of the Complete Yeast ESCRT-I Heterotetramer , 2007, Cell.

[6]  Roger L. Williams,et al.  The emerging shape of the ESCRT machinery , 2007, Nature Reviews Molecular Cell Biology.

[7]  R. D. Fisher,et al.  Structural and Biochemical Studies of ALIX/AIP1 and Its Role in Retrovirus Budding , 2007, Cell.

[8]  K. Nagashima,et al.  An Alix Fragment Potently Inhibits HIV-1 Budding , 2006, Journal of Biological Chemistry.

[9]  P. Bieniasz,et al.  Late budding domains and host proteins in enveloped virus release. , 2006, Virology.

[10]  Uwe Tessmer,et al.  Solution Structure of the Human Immunodeficiency Virus Type 1 p6 Protein* , 2005, Journal of Biological Chemistry.

[11]  R. Montelaro,et al.  Equine Infectious Anemia Virus Gag p9 Function in Early Steps of Virus Infection and Provirus Production , 2005, Journal of Virology.

[12]  Andrzej Kloczkowski,et al.  GOR V server for protein secondary structure prediction , 2005, Bioinform..

[13]  Aoife McLysaght,et al.  Porter: a new, accurate server for protein secondary structure prediction , 2005, Bioinform..

[14]  J. Luban,et al.  Covalent Modification of Human Immunodeficiency Virus Type 1 p6 by SUMO-1 , 2005, Journal of Virology.

[15]  P. Sharp,et al.  New Simian Immunodeficiency Virus Infecting De Brazza's Monkeys (Cercopithecus neglectus): Evidence for a Cercopithecus Monkey Virus Clade , 2004, Journal of Virology.

[16]  S. Costa,et al.  Conformational transitions in beta-lactoglobulin induced by cationic amphiphiles: equilibrium studies. , 2004, Biophysical journal.

[17]  P. Henklein,et al.  Structural Characterization of the HIV-1 Vpr N Terminus , 2003, Journal of Biological Chemistry.

[18]  D. Pérez-Caballero,et al.  Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Calistri,et al.  AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding , 2003, Cell.

[20]  Wesley I. Sundquist,et al.  Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein , 2002, Nature Structural Biology.

[21]  K-L Ting,et al.  Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence , 2002, Proteins.

[22]  Pierre Baldi,et al.  Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles , 2002, Proteins.

[23]  K. Nagashima,et al.  Equine Infectious Anemia Virus and the Ubiquitin-Proteasome System , 2002, Journal of Virology.

[24]  R. Montelaro,et al.  Functional Replacement and Positional Dependence of Homologous and Heterologous L Domains in Equine Infectious Anemia Virus Replication , 2002, Journal of Virology.

[25]  T. Patschinsky,et al.  The Late-Domain-Containing Protein p6 Is the Predominant Phosphoprotein of Human Immunodeficiency Virus Type 1 Particles , 2002, Journal of Virology.

[26]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[27]  L. Verplank,et al.  Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  U. Schubert,et al.  Ubiquitination of HIV-1 and MuLV Gag. , 2000, Virology.

[29]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[30]  Giovanni Soda,et al.  Exploiting the past and the future in protein secondary structure prediction , 1999, Bioinform..

[31]  Christophe Geourjon,et al.  Improved performance in protein secondary structure prediction by inhomogeneous score combination , 1999, Bioinform..

[32]  S. Vajda,et al.  Predicted and trifluoroethanol‐induced α‐helicity of polypeptides , 1998 .

[33]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[34]  J. Wills,et al.  Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein , 1997, Journal of virology.

[35]  G. Kleywegt Use of non-crystallographic symmetry in protein structure refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.

[36]  U. Lessel,et al.  NMR spectroscopic evidence that helodermin, unlike other members of the secretin/VIP family of peptides, is substantially structured in water. , 1996, Biochemistry.

[37]  Christophe Geourjon,et al.  SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments , 1995, Comput. Appl. Biosci..

[38]  Burkhard Rost,et al.  PHD - an automatic mail server for protein secondary structure prediction , 1994, Comput. Appl. Biosci..

[39]  P. Štrop,et al.  Structural and functional studies in vitro on the p6 protein from the HIV-1 gag open reading frame. , 1993, Biochimica et biophysica acta.

[40]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[41]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.

[42]  F E Cohen,et al.  Studies of synthetic helical peptides using circular dichroism and nuclear magnetic resonance. , 1990, Journal of molecular biology.

[43]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[44]  G. Smythers,et al.  Chemical and immunological characterizations of equine infectious anemia virus gag-encoded proteins , 1987, Journal of virology.

[45]  C. Issel,et al.  Isolation and comparative biochemical properties of the major internal polypeptides of equine infectious anemia virus , 1982, Journal of virology.

[46]  J. Garnier,et al.  Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. , 1978, Journal of molecular biology.

[47]  R. Eisenman,et al.  Generation of avian myeloblastosis virus structural proteins by proteolytic cleavage of a precursor polypeptide. , 1975, Journal of molecular biology.

[48]  R. D. Fisher,et al.  Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV , 2008, Nature Structural &Molecular Biology.

[49]  K. Nagashima,et al.  Structural basis for viral late-domain binding to Alix , 2007, Nature Structural &Molecular Biology.

[50]  Richard Hughey,et al.  Hidden Markov models for detecting remote protein homologies , 1998, Bioinform..

[51]  J. Gibrat,et al.  GOR method for predicting protein secondary structure from amino acid sequence. , 1996, Methods in enzymology.