Stabbing Circles for Sets of Segments in the Plane
暂无分享,去创建一个
[1] Evanthia Papadopoulou,et al. On the Farthest Line-Segment Voronoi Diagram , 2013, Int. J. Comput. Geom. Appl..
[2] Hazel Everett,et al. Farthest-polygon Voronoi diagrams , 2007, Comput. Geom..
[3] Esther M. Arkin,et al. Convex transversals , 2014, Comput. Geom..
[4] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[5] Leonidas J. Guibas,et al. The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..
[6] D. T. Lee,et al. The hausdorff voronoi diagram of polygonal objects: a divide and conquer approach , 2004, Int. J. Comput. Geom. Appl..
[7] David Avis,et al. Lower Bounds for Line Stabbing , 1989, Inf. Process. Lett..
[8] Evanthia Papadopoulou,et al. The Hausdorff Voronoi Diagram of Point Clusters in the Plane , 2003, Algorithmica.
[9] David G. Kirkpatrick,et al. Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..
[10] Stefan Langerman,et al. A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters , 2013, LATIN.
[11] Rolf Klein,et al. Voronoi Diagrams and Delaunay Triangulations , 2013, Encyclopedia of Algorithms.
[12] Leonidas J. Guibas,et al. Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.
[13] Matias Korman,et al. Stabbing segments with rectilinear objects , 2015, FCT.
[14] Franz Aurenhammer,et al. Farthest line segment Voronoi diagrams , 2006, Inf. Process. Lett..
[15] Stefan Langerman,et al. A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters , 2013, Algorithmica.
[16] Esther M. Arkin,et al. Bichromatic 2-center of pairs of points , 2015, Comput. Geom..
[17] Rolf Klein,et al. The Farthest Color Voronoi Diagram and Related Problems , 2001 .
[18] Micha Sharir,et al. The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..
[19] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.
[20] Leonidas J. Guibas,et al. Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..
[21] Alexander Pilz,et al. New results on stabbing segments with a polygon , 2015, Comput. Geom..
[22] David Rappaport. Minimum polygon transversals of line segments , 1995, Int. J. Comput. Geom. Appl..
[23] Mercè Claverol Aguas,et al. Stabbing circles for some sets of Delaunay segments , 2016, EuroCG 2016.
[24] Arnold L. Rosenberg,et al. Stabbing line segments , 1982, BIT.
[25] Mercè Claverol,et al. Stabbers of line segments in the plane , 2011, Comput. Geom..