Stabbing Circles for Sets of Segments in the Plane

Stabbing a set S of n segments in the plane by a line is a well-known problem. In this paper we consider the variation where the stabbing object is a circle instead of a line. We show that the problem is tightly connected to cluster Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi diagram. Based on these diagrams, we provide a method to compute all the combinatorially different stabbing circles for S, and the stabbing circles with maximum and minimum radius. We give conditions under which our method is fast. These conditions are satisfied if the segments in S are parallel, resulting in a \(O(n \log ^2{n})\) time algorithm. We also observe that the stabbing circle problem for S can be solved in optimal \(O(n^2)\) time and space by reducing the problem to computing the stabbing planes for a set of segments in 3D.

[1]  Evanthia Papadopoulou,et al.  On the Farthest Line-Segment Voronoi Diagram , 2013, Int. J. Comput. Geom. Appl..

[2]  Hazel Everett,et al.  Farthest-polygon Voronoi diagrams , 2007, Comput. Geom..

[3]  Esther M. Arkin,et al.  Convex transversals , 2014, Comput. Geom..

[4]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[5]  Leonidas J. Guibas,et al.  The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..

[6]  D. T. Lee,et al.  The hausdorff voronoi diagram of polygonal objects: a divide and conquer approach , 2004, Int. J. Comput. Geom. Appl..

[7]  David Avis,et al.  Lower Bounds for Line Stabbing , 1989, Inf. Process. Lett..

[8]  Evanthia Papadopoulou,et al.  The Hausdorff Voronoi Diagram of Point Clusters in the Plane , 2003, Algorithmica.

[9]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[10]  Stefan Langerman,et al.  A Randomized Incremental Approach for the Hausdorff Voronoi Diagram of Non-crossing Clusters , 2013, LATIN.

[11]  Rolf Klein,et al.  Voronoi Diagrams and Delaunay Triangulations , 2013, Encyclopedia of Algorithms.

[12]  Leonidas J. Guibas,et al.  Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.

[13]  Matias Korman,et al.  Stabbing segments with rectilinear objects , 2015, FCT.

[14]  Franz Aurenhammer,et al.  Farthest line segment Voronoi diagrams , 2006, Inf. Process. Lett..

[15]  Stefan Langerman,et al.  A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters , 2013, Algorithmica.

[16]  Esther M. Arkin,et al.  Bichromatic 2-center of pairs of points , 2015, Comput. Geom..

[17]  Rolf Klein,et al.  The Farthest Color Voronoi Diagram and Related Problems , 2001 .

[18]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..

[19]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[20]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[21]  Alexander Pilz,et al.  New results on stabbing segments with a polygon , 2015, Comput. Geom..

[22]  David Rappaport Minimum polygon transversals of line segments , 1995, Int. J. Comput. Geom. Appl..

[23]  Mercè Claverol Aguas,et al.  Stabbing circles for some sets of Delaunay segments , 2016, EuroCG 2016.

[24]  Arnold L. Rosenberg,et al.  Stabbing line segments , 1982, BIT.

[25]  Mercè Claverol,et al.  Stabbers of line segments in the plane , 2011, Comput. Geom..