Hybrid Metaheuristics Based on Evolutionary Algorithms and Simulated Annealing: Taxonomy, Comparison, and Synergy Test

The design of hybrid metaheuristics with ideas taken from the simulated annealing and evolutionary algorithms fields is a fruitful research line. In this paper, we first present an overview of the hybrid metaheuristics based on simulated annealing and evolutionary algorithms presented in the literature and classify them according to two well-known taxonomies of hybrid methods. Second, we perform an empirical study comparing the behavior of a representative set of the hybrid approaches based on evolutionary algorithms and simulated annealing found in the literature. In addition, a study of the synergy relationships provided by these hybrid approaches is presented. Finally, we analyze the behavior of the best performing hybrid metaheuristic with regard to several state-of-the-art evolutionary algorithms for binary combinatorial problems. The experimental studies presented provide useful conclusions about the schemes for combining ideas from simulated annealing and evolutionary algorithms that may improve the performance of these kinds of approaches and suggest that these hybrids metaheuristics represent a competitive alternative for binary combinatorial problems.

[1]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[2]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[3]  David E. Goldberg,et al.  Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..

[4]  Cong Jin,et al.  Localization Algorithm for Wireless Sensor Network Based on Genetic Simulated Annealing Algorithm , 2008, 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing.

[5]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[6]  Ling Zhang,et al.  A Novel Hybrid Stochastic Searching Algorithm Based on ACO and PSO: A Case Study of LDR Optimal Design , 2011, J. Softw..

[7]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[8]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[9]  Hao Chen,et al.  Parallel Genetic Simulated Annealing: A Massively Parallel SIMD Algorithm , 1998, IEEE Trans. Parallel Distributed Syst..

[10]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[11]  Antonio LaTorre,et al.  A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test , 2011, Soft Comput..

[12]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[13]  Zbigniew Michalewicz,et al.  Advances in Metaheuristics for Hard Optimization (Natural Computing Series) , 2007 .

[14]  Hui Zhang,et al.  Image segmentation using evolutionary computation , 1999, IEEE Trans. Evol. Comput..

[15]  Francisco Gortázar,et al.  Black box scatter search for general classes of binary optimization problems , 2010, Comput. Oper. Res..

[16]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[17]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[18]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[19]  Carlos García-Martínez,et al.  Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report , 2010, Comput. Oper. Res..

[20]  Carlos Cotta,et al.  A Hybrid GRASP - Evolutionary Algorithm Approach to Golomb Ruler Search , 2004, PPSN.

[21]  John E. Beasley,et al.  Heuristic algorithms for the unconstrained binary quadratic programming problem , 1998 .

[22]  Masao Fukushima,et al.  Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimization , 2006, J. Glob. Optim..

[23]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[24]  Günther R. Raidl,et al.  A Unified View on Hybrid Metaheuristics , 2006, Hybrid Metaheuristics.

[25]  Carlos García-Martínez,et al.  A GA-based multiple simulated annealing , 2010, IEEE Congress on Evolutionary Computation.

[26]  Bing Li,et al.  A novel stochastic optimization algorithm , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[27]  P. Preux,et al.  Towards hybrid evolutionary algorithms , 1999 .

[28]  Mehmet Emin Aydin,et al.  Parallel simulated annealing , 2005 .

[29]  Peiwen Que,et al.  Defect reconstruction of submarine oil pipeline from MFL signals using genetic simulated annealing algorithm , 2006 .

[30]  Francisco Herrera,et al.  Gradual distributed real-coded genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[31]  Rong-Song He,et al.  A hybrid real-parameter genetic algorithm for function optimization , 2006, Adv. Eng. Informatics.

[32]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[33]  Peter Salamon,et al.  Facts, Conjectures, and Improvements for Simulated Annealing , 1987 .

[34]  Francisco Herrera,et al.  Hybrid crossover operators for real-coded genetic algorithms: an experimental study , 2005, Soft Comput..

[35]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[36]  Xianpeng Wang,et al.  An Improved Particle Swarm Optimization Algorithm for the Hybrid Flowshop Scheduling to Minimize Total Weighted Completion Time in Process Industry , 2010, IEEE Transactions on Control Systems Technology.

[37]  Dirk Thierens,et al.  Population-Based Iterated Local Search: Restricting Neighborhood Search by Crossover , 2004, GECCO.

[38]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[39]  Rong Qu,et al.  Solving multi-objective multicast routing problems by evolutionary multi-objective simulated annealing algorithms with variable neighbourhoods , 2011, J. Oper. Res. Soc..

[40]  Carlos García-Martínez,et al.  Simulated annealing based on local genetic search , 2009, 2009 IEEE Congress on Evolutionary Computation.

[41]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[42]  V. K. Koumousis,et al.  A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance , 2006, IEEE Transactions on Evolutionary Computation.

[43]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[44]  El-Ghazali Talbi,et al.  A grid-based genetic algorithm combined with an adaptive simulated annealing for protein structure prediction , 2008, Soft Comput..

[45]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[46]  Carlos Alberto Conceição António,et al.  A study on synergy of multiple crossover operators in a hierarchical genetic algorithm applied to structural optimisation , 2009 .

[47]  Rym M'Hallah,et al.  Minimizing total earliness and tardiness on a single machine using a hybrid heuristic , 2007, Comput. Oper. Res..

[48]  Thomas Stützle,et al.  Iterated Robust Tabu Search for MAX-SAT , 2003, Canadian Conference on AI.

[49]  Yoh-Han Pao,et al.  Combinatorial optimization with use of guided evolutionary simulated annealing , 1995, IEEE Trans. Neural Networks.

[50]  Michael Defoin-Platel,et al.  Quantum-Inspired Evolutionary Algorithm: A Multimodel EDA , 2009, IEEE Transactions on Evolutionary Computation.

[51]  Linet Özdamar,et al.  Investigating a hybrid simulated annealing and local search algorithm for constrained optimization , 2008, Eur. J. Oper. Res..

[52]  Cheng-Yan Kao,et al.  Applying the genetic approach to simulated annealing in solving some NP-hard problems , 1993, IEEE Trans. Syst. Man Cybern..

[53]  Thomas Bäck,et al.  Evolutionary Algorithms: The Role of Mutation and Recombination , 2000 .

[54]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[55]  Guohai Liu,et al.  Model optimization of SVM for a fermentation soft sensor , 2010, Expert Syst. Appl..

[56]  Donald E. Brown,et al.  A Parallel Genetic Heuristic for the Quadratic Assignment Problem , 1989, ICGA.

[57]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[58]  Johan A. K. Suykens,et al.  Cooperative Behavior in Coupled Simulated Annealing Processes with Variance Control , 2006 .

[59]  Bruce Tidor,et al.  Increased Flexibility in Genetic Algorithms: the Use of variable Boltzmann Selective pressure to control Propagation , 1992, Computer Science and Operations Research.

[60]  Agostinho C. Rosa,et al.  Self-adjusting the intensity of assortative mating in genetic algorithms , 2008, Soft Comput..

[61]  Wei-Chiang Hong,et al.  Taiwanese 3G mobile phone demand forecasting by SVR with hybrid evolutionary algorithms , 2010, Expert Syst. Appl..

[62]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[63]  Se-Young Oh,et al.  A new evolutionary programming approach based on simulated annealing with local cooling schedule , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[64]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[65]  Fei Peng,et al.  Population-Based Algorithm Portfolios for Numerical Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[66]  J. Pollack,et al.  Hierarchically consistent test problems for genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[67]  Christian Blum,et al.  Hybrid Metaheuristics , 2010, Artificial Intelligence: Foundations, Theory, and Algorithms.

[68]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[69]  Alberto Palacios Pawlovsky,et al.  A hybrid SA-EA method for finding the maximum number of switching gates in a combinational circuit , 2008, IEICE Electron. Express.

[70]  D. Adler,et al.  Genetic algorithms and simulated annealing: a marriage proposal , 1993, IEEE International Conference on Neural Networks.

[71]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[72]  Xia Wei,et al.  An Improved Genetic Algorithm-Simulated Annealing Hybrid Algorithm for the Optimization of Multiple Reservoirs , 2008 .

[73]  P. N. Suganthan,et al.  Ensemble of Constraint Handling Techniques , 2010, IEEE Transactions on Evolutionary Computation.

[74]  Pedro Mendes,et al.  Parallelizing simulated annealing algorithms based on high-performance computer , 2007, J. Glob. Optim..

[75]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[76]  Hui Cheng,et al.  A multipopulation parallel genetic simulated annealing-based QoS routing and wavelength assignment integration algorithm for multicast in optical networks , 2009, Appl. Soft Comput..

[77]  Zheng Yang,et al.  GSA-based maximum likelihood estimation for threshold vector error correction model , 2007, Comput. Stat. Data Anal..

[78]  Griff L. Bilbro,et al.  Sample-sort simulated annealing , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[79]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[80]  Fred W. Glover,et al.  A hybrid metaheuristic approach to solving the UBQP problem , 2010, Eur. J. Oper. Res..

[81]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[82]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[83]  Yoke San Wong,et al.  Development of a parallel optimization method based on genetic simulated annealing algorithm , 2005, Parallel Comput..

[84]  D. Thierens Adaptive mutation rate control schemes in genetic algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[85]  Ajith Abraham,et al.  Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews , 2007 .

[86]  Sheldon Howard Jacobson,et al.  The Theory and Practice of Simulated Annealing , 2003, Handbook of Metaheuristics.