Randomized model order reduction

The singular value decomposition (SVD) has a crucial role in model order reduction. It is often utilized in the offline stage to compute basis functions that project the high-dimensional nonlinear problem into a low-dimensional model which is then evaluated cheaply. It constitutes a building block for many techniques such as the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The aim of this work is to provide an efficient computation of low-rank POD and/or DMD modes via randomized matrix decompositions. This is possible due to the randomized singular value decomposition (rSVD) which is a fast and accurate alternative of the SVD. Although this is considered an offline stage, this computation may be extremely expensive; therefore, the use of compressed techniques drastically reduce its cost. Numerical examples show the effectiveness of the method for both POD and DMD.

[1]  Steven L. Brunton,et al.  Compressive sampling and dynamic mode decomposition , 2013, 1312.5186.

[2]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[3]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[4]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[5]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[6]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[7]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[8]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[9]  Per-Gunnar Martinsson,et al.  RSVDPACK: An implementation of randomized algorithms for computing the singular value, interpolative, and CUR decompositions of matrices on multi-core and GPU architectures , 2015 .

[10]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[11]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[12]  Richard G. Baraniuk,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[13]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[14]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[15]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[16]  Mark Tygert,et al.  An implementation of a randomized algorithm for principal component analysis , 2014, ArXiv.

[17]  Zlatko Drmac,et al.  A New Selection Operator for the Discrete Empirical Interpolation Method - Improved A Priori Error Bound and Extensions , 2015, SIAM J. Sci. Comput..

[18]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[19]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[20]  Per-Gunnar Martinsson,et al.  Randomized methods for matrix computations , 2016, IAS/Park City Mathematics Series.

[21]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[22]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[23]  Per-Gunnar Martinsson Blocked rank-revealing QR factorizations: How randomized sampling can be used to avoid single-vector pivoting , 2015, ArXiv.

[24]  V. Rokhlin,et al.  A randomized algorithm for the approximation of matrices , 2006 .

[25]  Steven L. Brunton,et al.  Randomized Matrix Decompositions using R , 2016, Journal of Statistical Software.

[26]  Per-Gunnar Martinsson,et al.  RSVDPACK: Subroutines for computing partial singular value decompositions via randomized sampling on single core, multi core, and GPU architectures , 2015, ArXiv.

[27]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[28]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[29]  Alessandro Alla,et al.  Nonlinear Model Order Reduction via Dynamic Mode Decomposition , 2016, SIAM J. Sci. Comput..

[30]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[31]  V. Rokhlin,et al.  A fast randomized algorithm for the approximation of matrices ✩ , 2007 .

[32]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[33]  Georg Stadler,et al.  Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet , 2014, J. Comput. Phys..

[34]  C. Chui,et al.  Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .

[35]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[36]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[37]  Per-Gunnar Martinsson,et al.  randUTV , 2017, ACM Trans. Math. Softw..

[38]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[39]  Anthony Nouy,et al.  Interpolation of Inverse Operators for Preconditioning Parameter-Dependent Equations , 2015, SIAM J. Sci. Comput..

[40]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.