Web relation extraction with distant supervision

Being able to find relevant information about prominent entities quickly is the main reason to use a search engine. However, with large quantities of information on the World Wide Web, real time search over billions of Web pages can waste resources and the end user’s time. One of the solutions to this is to store the answer to frequently asked general knowledge queries, such as the albums released by a musical artist, in a more accessible format, a knowledge base. Knowledge bases can be created and maintained automatically by using information extraction methods, particularly methods to extract relations between proper names (named entities). A group of approaches for this that has become popular in recent years are distantly supervised approaches as they allow to train relation extractors without text-bound annotation, using instead known relations from a knowledge base to heuristically align them with a large textual corpus from an appropriate domain. This thesis focuses on researching distant supervision for the Web domain. A new setting for creating training and testing data for distant supervision from the Web with entity-specific search queries is introduced and the resulting corpus is published. Methods to recognise noisy training examples as well as methods to combine extractions based on statistics derived from the background knowledge base are researched. Using co-reference resolution methods to extract relations from sentences which do not contain a direct mention of the subject of the relation is also investigated. One bottleneck for distant supervision for Web data is identified to be named entity recognition and classification (NERC), since relation extraction methods rely on it for identifying relation arguments. Typically, existing pre-trained tools are used, which fail in diverse genres with non-standard language, such as the Web genre. The thesis explores what can cause NERC methods to fail in diverse genres and quantifies different reasons for NERC failure. Finally, a novel method for NERC for relation extraction is proposed based on the idea of jointly training the named entity classifier and the relation extractor with imitation learning to reduce the reliance on external NERC tools. This thesis improves the state of the art in distant supervision for knowledge base population, and sheds light on and proposes solutions for issues arising for information extraction for not traditionally studied domains.

[1]  Stephen Clark,et al.  A New Corpus and Imitation Learning Framework for Context-Dependent Semantic Parsing , 2014, TACL.

[2]  William W. Cohen,et al.  WebSets: extracting sets of entities from the web using unsupervised information extraction , 2012, WSDM '12.

[3]  Isabelle Augenstein,et al.  Statistical Knowledge Patterns: Identifying Synonymous Relations in Large Linked Datasets , 2013, International Semantic Web Conference.

[4]  Luke S. Zettlemoyer,et al.  Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations , 2011, ACL.

[5]  Mark Dredze,et al.  Annotating Named Entities in Twitter Data with Crowdsourcing , 2010, Mturk@HLT-NAACL.

[6]  Peter Glöckner,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2013 .

[7]  Jordan L. Boyd-Graber,et al.  Don't Until the Final Verb Wait: Reinforcement Learning for Simultaneous Machine Translation , 2014, EMNLP.

[8]  Estevam R. Hruschka,et al.  Conversing Learning: Active Learning and Active Social Interaction for Human Supervision in Never-Ending Learning Systems , 2012, IBERAMIA.

[9]  Thomas Demeester,et al.  Using active learning and semantic clustering for noise reduction in distant supervision , 2014, NIPS 2014.

[10]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[11]  Raphaël Troncy,et al.  Analysis of named entity recognition and linking for tweets , 2014, Inf. Process. Manag..

[12]  Kalina Bontcheva,et al.  Generalisation in named entity recognition: A quantitative analysis , 2017, Comput. Speech Lang..

[13]  Mitchell P. Marcus,et al.  OntoNotes: The 90% Solution , 2006, NAACL.

[14]  Aba-Sah Dadzie,et al.  Proceedings of the 2nd Workshop on Making Sense of Microposts (#MSM2012):Big things come in small packages , 2012 .

[15]  Isabelle Augenstein,et al.  Statistical Knowledge Patterns for Characterising Linked Data , 2013, WOP.

[16]  Isabelle Augenstein,et al.  Relation Extraction from the Web Using Distant Supervision , 2014, EKAW.

[17]  Alessandro Moschitti,et al.  Joint Distant and Direct Supervision for Relation Extraction , 2011, IJCNLP.

[18]  Igor Kononenko,et al.  Cost-Sensitive Learning with Neural Networks , 1998, ECAI.

[19]  Dan Roth,et al.  A Linear Programming Formulation for Global Inference in Natural Language Tasks , 2004, CoNLL.

[20]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[21]  Dietrich Klakow,et al.  RelationFactory: A Fast, Modular and Effective System for Knowledge Base Population , 2014, EACL.

[22]  Giuseppe Attardi DeepNL: a Deep Learning NLP pipeline , 2015, VS@HLT-NAACL.

[23]  Kalina Bontcheva,et al.  Using @Twitter Conventions to Improve #LOD-Based Named Entity Disambiguation , 2015, ESWC.

[24]  Xuchen Yao,et al.  Information Extraction over Structured Data: Question Answering with Freebase , 2014, ACL.

[25]  Christopher D. Manning Computational Linguistics and Deep Learning , 2015, Computational Linguistics.

[26]  Kentaro Torisawa,et al.  Acquiring Hyponymy Relations from Web Documents , 2004, NAACL.

[27]  Zhi-Hua Zhou,et al.  ON MULTI‐CLASS COST‐SENSITIVE LEARNING , 2006, Comput. Intell..

[28]  Nguyen Bach,et al.  A Review of Relation Extraction , 2007 .

[29]  Ion Androutsopoulos,et al.  Extractive Multi-Document Summarization with Integer Linear Programming and Support Vector Regression , 2012, COLING.

[30]  Sergey Brin,et al.  Extracting Patterns and Relations from the World Wide Web , 1998, WebDB.

[31]  Isabelle Augenstein,et al.  Distantly supervised Web relation extraction for knowledge base population , 2016, Semantic Web.

[32]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[33]  Isabelle Augenstein Seed Selection for Distantly Supervised Web-Based Relation Extraction , 2014, SWAIE@COLING.

[34]  Ralph Grishman,et al.  Ensemble Semantics for Large-scale Unsupervised Relation Extraction , 2012, EMNLP.

[35]  Jun'ichi Tsujii,et al.  A Markov Logic Approach to Bio-Molecular Event Extraction , 2009, BioNLP@HLT-NAACL.

[36]  Kalina Bontcheva,et al.  USFD: Twitter NER with Drift Compensation and Linked Data , 2015, NUT@IJCNLP.

[37]  Ramesh Nallapati,et al.  Exploiting Feature Hierarchy for Transfer Learning in Named Entity Recognition , 2008, ACL.

[38]  Oren Etzioni,et al.  TextRunner: Open Information Extraction on the Web , 2007, NAACL.

[39]  Matthew Richardson,et al.  Markov Logic , 2008, Probabilistic Inductive Logic Programming.

[40]  Ming-Wei Chang,et al.  Learning and Inference with Constraints , 2008, AAAI.

[41]  Andrew McCallum,et al.  Relation Extraction with Matrix Factorization and Universal Schemas , 2013, NAACL.

[42]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[43]  Dietrich Klakow,et al.  Combining Generative and Discriminative Model Scores for Distant Supervision , 2013, EMNLP.

[44]  Diego Reforgiato Recupero,et al.  Uncovering the Semantics of Wikipedia Pagelinks , 2014, EKAW.

[45]  Satoshi Sekine,et al.  A survey of named entity recognition and classification , 2007 .

[46]  Ramesh Nallapati,et al.  Multi-instance Multi-label Learning for Relation Extraction , 2012, EMNLP.

[47]  Oren Etzioni,et al.  Open Language Learning for Information Extraction , 2012, EMNLP.

[48]  Heng Ji,et al.  Incremental Joint Extraction of Entity Mentions and Relations , 2014, ACL.

[49]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[50]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[51]  Wai Lam,et al.  Jointly Identifying Entities and Extracting Relations in Encyclopedia Text via A Graphical Model Approach , 2010, COLING.

[52]  Heng Ji,et al.  Improving Name Tagging by Reference Resolution and Relation Detection , 2005, ACL.

[53]  Oren Etzioni,et al.  Open question answering over curated and extracted knowledge bases , 2014, KDD.

[54]  Kalina Bontcheva,et al.  GATE: an Architecture for Development of Robust HLT applications , 2002, ACL.

[55]  Dan Roth,et al.  Design Challenges and Misconceptions in Named Entity Recognition , 2009, CoNLL.

[56]  Yorick Wilks,et al.  Information Extraction: Beyond Document Retrieval , 1998, Int. J. Comput. Linguistics Chin. Lang. Process..

[57]  Guillaume Bouchard,et al.  Accelerating Stochastic Gradient Descent via Online Learning to Sample , 2015, ArXiv.

[58]  Kalina Bontcheva,et al.  USFD at SemEval-2016 Task 6: Any-Target Stance Detection on Twitter with Autoencoders , 2016, *SEMEVAL.

[59]  Andreas Vlachos,et al.  Search-based Structured Prediction applied to Biomedical Event Extraction , 2011, CoNLL.

[60]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[61]  Pierre Nugues,et al.  A Distant Supervision Approach to Semantic Role Labeling , 2015, *SEMEVAL.

[62]  Le Zhao,et al.  Filling Knowledge Base Gaps for Distant Supervision of Relation Extraction , 2013, ACL.

[63]  Sampo Pyysalo,et al.  Overview of BioNLP’09 Shared Task on Event Extraction , 2009, BioNLP@HLT-NAACL.

[64]  Yang Liu,et al.  Exploring Fine-grained Entity Type Constraints for Distantly Supervised Relation Extraction , 2014, COLING.

[65]  Omer Levy,et al.  Neural Word Embedding as Implicit Matrix Factorization , 2014, NIPS.

[66]  Timothy Baldwin,et al.  Lexical Normalisation of Short Text Messages: Makn Sens a #twitter , 2011, ACL.

[67]  Razvan C. Bunescu,et al.  Subsequence Kernels for Relation Extraction , 2005, NIPS.

[68]  Claire Cardie,et al.  Joint Inference for Fine-grained Opinion Extraction , 2013, ACL.

[69]  Kalina Bontcheva,et al.  Towards a semantic extraction of named entities , 2003 .

[70]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[71]  Haotian Sun,et al.  ANNALIST - ANNotation ALIgnment and Scoring Tool , 2008, LREC.

[72]  Shourya Roy,et al.  A survey of types of text noise and techniques to handle noisy text , 2009, AND '09.

[73]  Chang Wang,et al.  Relation extraction and scoring in DeepQA , 2012, IBM J. Res. Dev..

[74]  Jason Weston,et al.  Learning Structured Embeddings of Knowledge Bases , 2011, AAAI.

[75]  Miao Fan,et al.  Distant Supervision for Entity Linking , 2015, PACLIC.

[76]  Yoshua Bengio,et al.  Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach , 2011, ICML.

[77]  Gerhard Weikum,et al.  YAGO2: exploring and querying world knowledge in time, space, context, and many languages , 2011, WWW.

[78]  悠太 菊池,et al.  大規模要約資源としてのNew York Times Annotated Corpus , 2015 .

[79]  Heeyoung Lee,et al.  Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules , 2013, CL.

[80]  Andrew McCallum,et al.  Modeling Relations and Their Mentions without Labeled Text , 2010, ECML/PKDD.

[81]  Ryan Gabbard,et al.  Coreference for Learning to Extract Relations: Yes Virginia, Coreference Matters , 2011, ACL.

[82]  Dirk Hovy,et al.  Adapting taggers to Twitter with not-so-distant supervision , 2014, COLING.

[83]  Heng Ji,et al.  Knowledge Base Population: Successful Approaches and Challenges , 2011, ACL.

[84]  See-Kiong Ng,et al.  Negative Training Data Can be Harmful to Text Classification , 2010, EMNLP.

[85]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[86]  Mark Stevenson,et al.  Self-supervised Relation Extraction Using UMLS , 2014, CLEF.

[87]  Estevam R. Hruschka,et al.  Coupled semi-supervised learning for information extraction , 2010, WSDM '10.

[88]  Edward Y. Chang,et al.  Entity Disambiguation with Freebase , 2012, 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.

[89]  Gerhard Weikum,et al.  YAGO: A Large Ontology from Wikipedia and WordNet , 2008, J. Web Semant..

[90]  Frederick Reiss,et al.  Domain Adaptation of Rule-Based Annotators for Named-Entity Recognition Tasks , 2010, EMNLP.

[91]  Nan Ye,et al.  Domain adaptive bootstrapping for named entity recognition , 2009, EMNLP.

[92]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[93]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[94]  Andrew McCallum,et al.  Learning Extractors from Unlabeled Text using Relevant Databases , 2007 .

[95]  Stuart J. Russell Learning agents for uncertain environments (extended abstract) , 1998, COLT' 98.

[96]  Dirk Hovy,et al.  Crowdsourcing and annotating NER for Twitter #drift , 2014, LREC.

[97]  Xian Wu,et al.  Domain Adaptation with Latent Semantic Association for Named Entity Recognition , 2009, NAACL.

[98]  Yoshua Bengio,et al.  Deep Learning of Representations for Unsupervised and Transfer Learning , 2011, ICML Unsupervised and Transfer Learning.

[99]  Dirk Hovy,et al.  User Review Sites as a Resource for Large-Scale Sociolinguistic Studies , 2015, WWW.

[100]  David Y. W. Lee,et al.  Genres, Registers, Text Types, Domains and Styles: Clarifying the Concepts and Navigating a Path through the BNC Jungle , 2001 .

[101]  Jacob Eisenstein,et al.  What to do about bad language on the internet , 2013, NAACL.

[102]  Andrew McCallum,et al.  Composition of Conditional Random Fields for Transfer Learning , 2005, HLT.

[103]  Leon Derczynski,et al.  Generalised Brown Clustering and Roll-Up Feature Generation , 2016, AAAI.

[104]  Doug Downey,et al.  Web-scale information extraction in knowitall: (preliminary results) , 2004, WWW '04.

[105]  Oren Etzioni,et al.  Modeling Missing Data in Distant Supervision for Information Extraction , 2013, TACL.

[106]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[107]  Brian Locke Named Entity Recognition : Adapting to Microblogging , 2009 .

[108]  Daniel S. Weld,et al.  Fine-Grained Entity Recognition , 2012, AAAI.

[109]  David D. Palmer,et al.  A Statistical Profile of the Named Entity Task , 1997, ANLP.

[110]  Anind K. Dey,et al.  Maximum Entropy Inverse Reinforcement Learning , 2008, AAAI.

[111]  Ralph Grishman,et al.  Infusion of Labeled Data into Distant Supervision for Relation Extraction , 2014, ACL.

[112]  Alessandro Moschitti,et al.  End-to-End Relation Extraction Using Distant Supervision from External Semantic Repositories , 2011, ACL.

[113]  Isabelle Augenstein,et al.  Mapping Keywords to Linked Data Resources for Automatic Query Expansion , 2013, KNOW@LOD.

[114]  Daniel S. Weld,et al.  Open Information Extraction Using Wikipedia , 2010, ACL.

[115]  Christopher Ré,et al.  Understanding Tables in Context Using Standard NLP Toolkits , 2013, ACL.

[116]  Daniel S. Weld,et al.  Autonomously semantifying wikipedia , 2007, CIKM '07.

[117]  Hongyu Guo,et al.  The Unreasonable Effectiveness of Word Representations for Twitter Named Entity Recognition , 2015, NAACL.

[118]  George Forman,et al.  Learning from Little: Comparison of Classifiers Given Little Training , 2004, PKDD.

[119]  Isabelle Augenstein,et al.  Joint Information Extraction from the Web Using Linked Data , 2014, SEMWEB.

[120]  Timothy Baldwin,et al.  Shared Tasks of the 2015 Workshop on Noisy User-generated Text: Twitter Lexical Normalization and Named Entity Recognition , 2015, NUT@IJCNLP.

[121]  Valentin I. Spitkovsky,et al.  A Simple Distant Supervision Approach for the TAC-KBP Slot Filling Task , 2010, TAC.

[122]  Dekang Lin,et al.  Bootstrapping Path-Based Pronoun Resolution , 2006, ACL.

[123]  Enrique Alfonseca,et al.  Pattern Learning for Relation Extraction with a Hierarchical Topic Model , 2012, ACL.

[124]  Kalina Bontcheva,et al.  Stance Detection with Bidirectional Conditional Encoding , 2016, EMNLP.

[125]  Michael L. Wick,et al.  SampleRank : Learning Preferences from Atomic Gradients , 2009 .

[126]  Dietrich Klakow,et al.  Feature-based models for improving the quality of noisy training data for relation extraction , 2013, CIKM.

[127]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[128]  Isabelle Augenstein,et al.  Extracting Relations between Non-Standard Entities using Distant Supervision and Imitation Learning , 2015, EMNLP.

[129]  Ming Zhou,et al.  Recognizing Named Entities in Tweets , 2011, ACL.

[130]  Isabelle Augenstein,et al.  "Linked data as background knowledge for information extraction on the web" by Ziqi Zhang, Anna Lisa Gentile and Isabelle Augenstein with Martin Vesely as coordinator , 2014, LINK.

[131]  Hoifung Poon,et al.  Grounded Semantic Parsing for Complex Knowledge Extraction , 2015, NAACL.

[132]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[133]  Ralph Grishman,et al.  Distant Supervision for Relation Extraction with an Incomplete Knowledge Base , 2013, NAACL.

[134]  Wim Peters,et al.  SPRAT : a tool for automatic semantic pattern-based ontology population , 2009 .

[135]  Kalina Bontcheva,et al.  Monolingual Social Media Datasets for Detecting Contradiction and Entailment , 2016, LREC.

[136]  Ralph Grishman,et al.  Message Understanding Conference- 6: A Brief History , 1996, COLING.

[137]  Rohit J. Kate,et al.  Joint Entity and Relation Extraction Using Card-Pyramid Parsing , 2010, CoNLL.

[138]  Pieter Abbeel,et al.  Apprenticeship learning via inverse reinforcement learning , 2004, ICML.

[139]  Geoffrey J. Gordon,et al.  A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning , 2010, AISTATS.

[140]  Rahul Gupta,et al.  Knowledge base completion via search-based question answering , 2014, WWW.

[141]  Christopher D. Manning,et al.  Combining Distant and Partial Supervision for Relation Extraction , 2014, EMNLP.

[142]  Daniel S. Weld,et al.  Type-Aware Distantly Supervised Relation Extraction with Linked Arguments , 2014, EMNLP.

[143]  Zornitsa Kozareva Bootstrapping Named Entity Recognition with Automatically Generated Gazetteer Lists , 2006, EACL.

[144]  Oliver Lemon,et al.  Natural Language Generation as Planning Under Uncertainty for Spoken Dialogue Systems , 2009, EACL.

[145]  Dietrich Klakow,et al.  Generalizing from Freebase and Patterns using Cluster-Based Distant Supervision for TAC KBP Slotfilling 2012 , 2012, TAC.

[146]  M. Surdeanu,et al.  Overview of the English Slot Filling Track at the TAC 2014 Knowledge Base Population Evaluation , 2014 .

[147]  Nathanael Chambers,et al.  Learning for Microblogs with Distant Supervision: Political Forecasting with Twitter , 2012, EACL.

[148]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[149]  A. Swartz MusicBrainz: A Semantic Web Service , 2002, IEEE Intell. Syst..

[150]  D. Roth 1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[151]  Christopher D. Manning,et al.  Stanford's Distantly Supervised Slot Filling Systems for KBP 2014 , 2014 .

[152]  Zhiyuan Liu,et al.  Learning Entity and Relation Embeddings for Knowledge Graph Completion , 2015, AAAI.

[153]  Oren Etzioni,et al.  Identifying Relations for Open Information Extraction , 2011, EMNLP.

[154]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.

[155]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[156]  Luis Gravano,et al.  Snowball: extracting relations from large plain-text collections , 2000, DL '00.

[157]  Aba-Sah Dadzie,et al.  #Microposts2015 -- 5th Workshop on 'Making Sense of Microposts': Big things come in small packages , 2015, WWW.

[158]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[159]  He He,et al.  Dynamic Feature Selection for Dependency Parsing , 2013, EMNLP.

[160]  Hassan Sajjad,et al.  Distant Supervision for Tweet Classification Using YouTube Labels , 2015, ICWSM.

[161]  Patrick Pantel,et al.  Entity Extraction via Ensemble Semantics , 2009, EMNLP.

[162]  Dirk Hovy,et al.  Personality Traits on Twitter—or—How to Get 1,500 Personality Tests in a Week , 2015, WASSA@EMNLP.

[163]  Yoram Bachrach,et al.  Studying User Income through Language, Behaviour and Affect in Social Media , 2015, PloS one.

[164]  Daniel S. Weld,et al.  Automatically refining the wikipedia infobox ontology , 2008, WWW.

[165]  Stephen Clark,et al.  Application-Driven Relation Extraction with Limited Distant Supervision , 2014 .

[166]  Wei Shen,et al.  LIEGE:: link entities in web lists with knowledge base , 2012, KDD.

[167]  Raymond J. Mooney,et al.  Stacked Ensembles of Information Extractors for Knowledge-Base Population , 2015, ACL.

[168]  Yoshua Bengio,et al.  A Neural Probabilistic Language Model , 2003, J. Mach. Learn. Res..

[169]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[170]  Andreas Vlachos,et al.  An investigation of imitation learning algorithms for structured prediction , 2012, EWRL.

[171]  Dietrich Klakow,et al.  A survey of noise reduction methods for distant supervision , 2013, AKBC '13.

[172]  Christian Bizer,et al.  DBpedia spotlight: shedding light on the web of documents , 2011, I-Semantics '11.

[173]  Lyle H. Ungar,et al.  Web-scale named entity recognition , 2008, CIKM '08.

[174]  James I. Garrels,et al.  The Yeast Protein Database (YPD): a curated proteome database for Saccharomyces cerevisiae , 1998, Nucleic Acids Res..

[175]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[176]  Isabelle Augenstein,et al.  An unsupervised data-driven method to discover equivalent relations in large Linked Datasets , 2016, Semantic Web.

[177]  Hiroshi Nakagawa,et al.  Reducing Wrong Labels in Distant Supervision for Relation Extraction , 2012, ACL.

[178]  Mark Craven,et al.  Constructing Biological Knowledge Bases by Extracting Information from Text Sources , 1999, ISMB.

[179]  Mark A. Przybocki,et al.  The Automatic Content Extraction (ACE) Program – Tasks, Data, and Evaluation , 2004, LREC.

[180]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[181]  Andrew McCallum,et al.  Joint inference of entities, relations, and coreference , 2013, AKBC '13.

[182]  Jun Zhao,et al.  Collective entity linking in web text: a graph-based method , 2011, SIGIR.

[183]  Andrew Y. Ng,et al.  Parsing Natural Scenes and Natural Language with Recursive Neural Networks , 2011, ICML.

[184]  Isabelle Augenstein,et al.  Unsupervised wrapper induction using linked data , 2013, K-CAP.

[185]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[186]  Andrew McCallum,et al.  Collective Cross-Document Relation Extraction Without Labelled Data , 2010, EMNLP.

[187]  Kalina Bontcheva,et al.  Microblog-genre noise and impact on semantic annotation accuracy , 2013, HT.

[188]  Robert L. Mercer,et al.  Class-Based n-gram Models of Natural Language , 1992, CL.

[189]  Razvan C. Bunescu,et al.  Using Encyclopedic Knowledge for Named entity Disambiguation , 2006, EACL.

[190]  John Langford,et al.  Search-based structured prediction , 2009, Machine Learning.

[191]  Honglak Lee,et al.  Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning , 2014, NIPS.

[192]  Erik F. Tjong Kim Sang,et al.  Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition , 2003, CoNLL.