Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.
暂无分享,去创建一个
Feng Chen | Magdalena Aguiló | Francesc Díaz | Maria Cinta Pujol | J. R. Vázquez de Aldana | Huu-Dat Nguyen | Feng Chen | A. Ródenas | M. Aguiló | F. Díaz | Huu‐Dat Nguyen | M. Pujol | Airán Ródenas | Javier R Vázquez de Aldana | Javier Martínez | Javier Martínez
[1] A. Okhrimchuk,et al. Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing. , 2005, Optics letters.
[2] G. R. Hadley,et al. Transparent boundary condition for the beam propagation method , 1992 .
[3] Graeme Brown,et al. Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm. , 2013, Optics letters.
[4] Feng Chen,et al. Mid-infrared waveguide lasers in rare-earth-doped YAG. , 2012, Optics letters.
[5] Daniel Jaque,et al. Optical investigation of femtosecond laser induced microstress in neodymium doped lithium niobate crystals , 2006 .
[6] Nemanja Jovanovic,et al. Low loss mid-infrared ZBLAN waveguides for future astronomical applications. , 2015, Optics express.
[7] R. Scarmozzino,et al. Numerical techniques for modeling guided-wave photonic devices , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[8] S. Boscolo,et al. Control of the properties of micro-structured waveguides in lithium niobate crystal. , 2013, Optics express.
[9] I. Solskii,et al. Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature , 2009 .
[10] Stefan Nolte,et al. Detailed investigations on femtosecond-induced modifications in crystalline quartz for integrated optical applications , 2005, SPIE LASE.
[11] L. Roso,et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations , 2009 .
[12] Feng Chen,et al. Mid-infrared waveguides in zinc sulfide crystal , 2013 .
[13] Ian Bennion,et al. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses. , 2012, Optics express.
[14] Feng Chen,et al. Femtosecond laser micromachining of lithium niobate depressed cladding waveguides , 2013 .
[15] D Y Tang,et al. Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG. , 2011, Optics letters.
[16] Cornelia Denz,et al. Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing. , 2014, Optics express.
[17] C. Menyuk,et al. Understanding leaky modes: slab waveguide revisited , 2009 .
[18] D. Jaque,et al. Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics , 2008 .
[19] Mykhaylo Dubov,et al. Optimisation of microstructured waveguides in z-cut LiNbO3 crystals , 2014 .
[20] David E. Zelmon,et al. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. magnesium oxide doped lithium niobate , 1997 .
[21] Feng Chen,et al. Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides , 2009 .
[22] M. Koshiba,et al. Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme , 2000, Journal of Lightwave Technology.
[23] Andreas Tünnermann,et al. Origins of waveguiding in femtosecond laser-structured LiNbO3 , 2007 .
[24] S. Nolte,et al. Transmission electron microscopy studies of femtosecond laser induced modifications in quartz , 2003 .
[25] R. T. Smith,et al. Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals , 1969 .
[26] Andreas Tünnermann,et al. Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate , 2006 .
[27] R. Osgood,et al. Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications , 1991 .
[28] Y. Bellouard,et al. On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure. , 2014, Optics express.