Fast memory efficient evaluation of spherical polynomials at scattered points
暂无分享,去创建一个
[1] L. P. Pellinen. Physical Geodesy , 1972 .
[2] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[3] Tamás Erdélyi,et al. Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials , 1994 .
[4] Vilmos Totik,et al. Fast decreasing polynomials , 1990 .
[5] Martin J. Mohlenkamp. A fast transform for spherical harmonics , 1997 .
[6] Mark A Ratner,et al. A fast method for solving both the time-dependent Schrödinger equation in angular coordinates and its associated "m-mixing" problem. , 2009, The Journal of chemical physics.
[7] Witold Maciejewski,et al. A MAGELLAN–IMACS-IFU SEARCH FOR DYNAMICAL DRIVERS OF NUCLEAR ACTIVITY. I. REDUCTION PIPELINE AND GALAXY CATALOG , 2011, 1112.4497.
[8] Mark Tygert,et al. Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..
[10] Yuan Xu,et al. Sub-exponentially localized kernels and frames induced by orthogonal expansions , 2008, 0809.3421.
[11] Stefan Kunis,et al. Fast spherical Fourier algorithms , 2003 .
[12] Vladimir Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..
[13] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[14] Zydrunas Gimbutas,et al. A fast and stable method for rotating spherical harmonic expansions , 2009, J. Comput. Phys..
[15] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[16] Vladimir Rokhlin,et al. A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..
[17] Mark Tygert,et al. Fast algorithms for spherical harmonic expansions, II , 2008, J. Comput. Phys..
[18] D. Healy,et al. Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .
[19] E. LESTER SMITH,et al. AND OTHERS , 2005 .
[20] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[21] Pencho Petrushev,et al. Irregular sampling of band-limited functions on the sphere , 2014 .
[22] D. S. Seljebotn. WAVEMOTH–FAST SPHERICAL HARMONIC TRANSFORMS BY BUTTERFLY MATRIX COMPRESSION , 2011, 1110.4874.
[23] Leopold Fejér,et al. On the infinite sequences arising in the theories of harmonic analysis, of interpolation, and of mechanical quadratures , 1933 .
[24] Yuan Xu,et al. Decomposition of spaces of distributions induced by tensor product bases , 2009, 0902.2601.
[25] Mark Tygert,et al. Fast algorithms for spherical harmonic expansions, III , 2009, J. Comput. Phys..
[26] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[27] Pencho Petrushev,et al. Decomposition of Besov and Triebel–Lizorkin spaces on the sphere , 2006 .
[28] Pencho Petrushev,et al. Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..
[29] L. Fejér,et al. Mechanische Quadraturen mit positiven Cotesschen Zahlen , 1933 .
[30] Paul Nevai,et al. Distribution of zeros of orthogonal polynomials , 1979 .