All‐Solid‐State Cable‐Type Flexible Zinc–Air Battery

A cable-type flexible Zn-air battery with a spiral zinc anode, gel polymer electrolyte (GPE), and air cathode coated on a nonprecious metal catalyst is designed in order to extend its application area toward wearable electronic devices.

[1]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[2]  Mohamad Kamal Harun,et al.  Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte , 2005 .

[3]  Markku Rouvala,et al.  Nanomaterial-enhanced all-solid flexible zinc--carbon batteries. , 2010, ACS nano.

[4]  W. F. Harrington,et al.  Collagen structure in solution. I. Kinetics of helix regeneration in single-chain gelatins. , 1970, Biochemistry.

[5]  Sang-Young Lee,et al.  Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries , 2013 .

[6]  Xin-bo Zhang,et al.  Synthesis of perovskite-based porous La(0.75)Sr(0.25)MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. , 2013, Angewandte Chemie.

[7]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[8]  Huisheng Peng,et al.  Weaving Efficient Polymer Solar Cell Wires into Flexible Power Textiles , 2014 .

[9]  Gi Su Park,et al.  A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. , 2012, Angewandte Chemie.

[10]  Elton J. Cairns,et al.  The Secondary Alkaline Zinc Electrode , 1991 .

[11]  Jean-François Fauvarque,et al.  Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO) , 2000 .

[12]  Agnieszka Pawlicka,et al.  Conductivity study of a gelatin-based polymer electrolyte , 2007 .

[13]  S. Majuru,et al.  Design and Characterization of a Silk-Fibroin-Based Drug Delivery Platform Using Naproxen as a Model Drug , 2012, Journal of drug delivery.

[14]  Huisheng Peng,et al.  A highly stretchable, fiber-shaped supercapacitor. , 2013, Angewandte Chemie.

[15]  Dan Xu,et al.  Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries , 2013, Nature Communications.

[16]  Zhibin Yang,et al.  Winding ultrathin, transparent, and electrically conductive carbon nanotube sheets into high-performance fiber-shaped dye-sensitized solar cells , 2013 .

[17]  Heon-Cheol Shin,et al.  Cable‐Type Flexible Lithium Ion Battery Based on Hollow Multi‐Helix Electrodes , 2012, Advanced materials.

[18]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[19]  K. Kinoshita,et al.  Electrochemical Oxygen Technology , 1992 .

[20]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[21]  Mark K. Debe,et al.  Electrocatalyst approaches and challenges for automotive fuel cells , 2012, Nature.

[22]  A. Arof,et al.  Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries , 2002 .

[23]  J. Vinograd,et al.  The mechanism of gelation of gelatin. The influence of pH, concentration, time and dilute electrolyte on the gelation of gelatin and modified gelatins. , 1962, Biochimica et biophysica acta.

[24]  J. Fauvarque,et al.  Alkaline poly(ethylene oxide) solid polymer electrolytes. Application to nickel secondary batteries , 1995 .

[25]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[26]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[27]  Huisheng Peng,et al.  Twisted Aligned Carbon Nanotube/Silicon Composite Fiber Anode for Flexible Wire‐Shaped Lithium‐Ion Battery , 2014, Advanced materials.

[28]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[29]  A. Damjanović,et al.  New evidence supports the proposed mechanism for O2 reduction at oxide free platinum electrodes , 1979 .

[30]  Shouheng Sun,et al.  Tuning nanoparticle catalysis for the oxygen reduction reaction. , 2013, Angewandte Chemie.

[31]  F. Vollrath,et al.  Spider and mulberry silkworm silks as compatible biomaterials , 2007 .

[32]  Srinivasan Sampath,et al.  Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors , 2007 .

[33]  Zhibin Yang,et al.  Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells , 2014 .

[34]  Jun Chen,et al.  Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. , 2012, Chemical Society reviews.

[35]  Huisheng Peng,et al.  Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. , 2014, Nano letters.

[36]  Chun–Chen Yang Polymer Ni–MH battery based on PEO–PVA–KOH polymer electrolyte , 2002 .

[37]  Xin-bo Zhang,et al.  Graphene Oxide Gel‐Derived, Free‐Standing, Hierarchically Porous Carbon for High‐Capacity and High‐Rate Rechargeable Li‐O2 Batteries , 2012 .

[38]  Andrzej Lewandowski,et al.  Novel poly(vinyl alcohol)–KOH–H2O alkaline polymer electrolyte , 2000 .

[39]  Hao Sun,et al.  A twisted wire-shaped dual-function energy device for photoelectric conversion and electrochemical storage. , 2014, Angewandte Chemie.

[40]  Huisheng Peng,et al.  Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber , 2013, Advanced materials.

[41]  Sun Tai Kim,et al.  Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. , 2014, Nano letters.