Learning pseudo-Boolean k-DNF and submodular functions
暂无分享,去创建一个
[1] Venkatesh Medabalimi. Property Testing Lower Bounds via Communication Complexity , 2012 .
[2] Peter L. Hammer,et al. Horn Functions and Submodular Boolean Functions , 1997, Theor. Comput. Sci..
[3] Pravesh Kothari,et al. Submodular functions are noise stable , 2012, SODA.
[4] Maria-Florina Balcan,et al. Learning submodular functions , 2010, ECML/PKDD.
[5] Leslie G. Valiant,et al. A theory of the learnable , 1984, CACM.
[6] Adam Tauman Kalai,et al. Agnostically learning decision trees , 2008, STOC.
[7] Dana Ron,et al. Property testing and its connection to learning and approximation , 1998, JACM.
[8] MICHAL PARNAS,et al. On Testing Convexity and Submodularity , 2002, SIAM J. Comput..
[9] Jan Vondrák,et al. Is Submodularity Testable? , 2010, Algorithmica.
[10] Leonid A. Levin,et al. A hard-core predicate for all one-way functions , 1989, STOC '89.
[11] Yishay Mansour,et al. An O(nlog log n) learning algorithm for DNF under the uniform distribution , 1992, COLT '92.
[12] Eyal Kushilevitz,et al. Learning decision trees using the Fourier spectrum , 1991, STOC '91.
[13] S. Boucheron,et al. A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.
[14] Yishay Mansour,et al. An O(n^(log log n)) Learning Algorithm for DNT under the Uniform Distribution , 1995, J. Comput. Syst. Sci..
[15] Ryan O'Donnell,et al. Analysis of Boolean Functions , 2014, ArXiv.
[16] Johan Håstad,et al. Almost optimal lower bounds for small depth circuits , 1986, STOC '86.
[17] Eyal Kushilevitz,et al. Learning Decision Trees Using the Fourier Sprectrum (Extended Abstract) , 1991, Symposium on the Theory of Computing.
[18] Dana Ron,et al. Testing Basic Boolean Formulae , 2002, SIAM J. Discret. Math..
[19] Tim Roughgarden,et al. Sketching valuation functions , 2012, SODA.
[20] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[21] Vahab S. Mirrokni,et al. Approximating submodular functions everywhere , 2009, SODA.
[22] Aaron Roth,et al. Privately Releasing Conjunctions and the Statistical Query Barrier , 2013, SIAM J. Comput..
[23] Maria-Florina Balcan,et al. Learning Valuation Functions , 2011, COLT.
[24] Peter L. Hammer,et al. Boolean Functions - Theory, Algorithms, and Applications , 2011, Encyclopedia of mathematics and its applications.
[25] Deeparnab Chakrabarty,et al. Testing Coverage Functions , 2012, ICALP.
[26] David P. Woodruff,et al. Open Problems in Data Streams, Property Testing, and Related Topics , 2011 .
[27] Jan Vondrák,et al. A note on concentration of submodular functions , 2010, ArXiv.
[28] Supported by Anr grant Tamis. On concentration of self-bounding functions , 2009 .
[29] Ronitt Rubinfeld,et al. Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..
[30] P. Beame. A switching lemma primer , 1994 .