Terrestrial and Martian space weather: A complex systems approach

[1]  X. Blanco‐Cano,et al.  Jets and Mirror Mode Waves in Earth's Magnetosheath , 2023, Journal of geophysical research. Space physics.

[2]  T. Karlsson,et al.  Waves in Magnetosheath Jets—Classification and the Search for Generation Mechanisms Using MMS Burst Mode Data , 2023, Journal of Geophysical Research: Space Physics.

[3]  Libo Liu,et al.  Upstream proton cyclotron waves at Mars during the passage of solar wind stream interaction regions , 2023, Astronomy & Astrophysics.

[4]  J. Raeder,et al.  Seasonal and diurnal variations of Kelvin-Helmholtz Instability at terrestrial magnetopause , 2023, Nature communications.

[5]  L. Kong,et al.  Inversion of Upstream Solar Wind Parameters from ENA Observations at Mars , 2023, Remote. Sens..

[6]  Alessia De Iuliis,et al.  M5 — Mars Magnetospheric Multipoint Measurement Mission: A multi-spacecraft plasma physics mission to Mars , 2023, Advances in Space Research.

[7]  S. Kameda,et al.  Quantifying the global solar wind-magnetosphere interaction with the Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM) mission concept , 2023, Frontiers in Astronomy and Space Sciences.

[8]  G. DiBraccio,et al.  The Mini Induced Magnetospheres at Mars , 2023, Geophysical Research Letters.

[9]  O. Rosso,et al.  Hydrological changes caused by the construction of dams and reservoirs: The CECP analysis. , 2023, Chaos.

[10]  D. Mitchell,et al.  Transient Foreshock Structures Upstream of Mars: Implications of the Small Martian Bow Shock , 2023, Geophysical Research Letters.

[11]  B. Sánchez–Cano Mars’ ionosphere: The key for systematic exploration of the red planet , 2023, Frontiers in Astronomy and Space Sciences.

[12]  A. Dmitriev,et al.  Atmospheric Effects of Magnetosheath Jets , 2022, Atmosphere.

[13]  S. Gama,et al.  Origin of multifractality in solar wind turbulence: the role of current sheets , 2022, Monthly Notices of the Royal Astronomical Society.

[14]  E. Antonova,et al.  Main features of magnetospheric dynamics in the conditions of pressure balance , 2022, Journal of Atmospheric and Solar-Terrestrial Physics.

[15]  E. Echer,et al.  ULF Waves Propagating Through the Martian Magnetosheath into the Ionosphere: A Statistical Study Using Mars Express Observations , 2022, Brazilian Journal of Physics.

[16]  L. B. Rubio,et al.  Intensification of magnetic field in merging magnetic flux tubes driven by supergranular vortical flows , 2022, Monthly Notices of the Royal Astronomical Society.

[17]  P. Démoulin,et al.  A robust estimation of the twist distribution in magnetic clouds , 2022, Astronomy & Astrophysics.

[18]  V. Angelopoulos,et al.  Investigating the Role of Magnetosheath High‐Speed Jets in Triggering Dayside Ground Magnetic Ultra‐Low Frequency Waves , 2022, Geophysical Research Letters.

[19]  A. Vaivads,et al.  On Magnetosheath Jet Kinetic Structure and Plasma Properties , 2022, Geophysical Research Letters.

[20]  F. A. Borotto,et al.  Nonlinear dynamics in space plasma turbulence: temporal stochastic chaos , 2022, Reviews of Modern Plasma Physics.

[21]  N. Schneider,et al.  First Synoptic Images of FUV Discrete Aurora and Discovery of Sinuous Aurora at Mars by EMM EMUS , 2022, Geophysical Research Letters.

[22]  I. Kourakis,et al.  Debye-scale Solitary Structures in the Martian Magnetosheath , 2022, The Astrophysical Journal.

[23]  E. Echer,et al.  Interrelationships of Similar Magnetic Effects at Low and High Latitudes During High-Intensity Long-Duration Auroral Activity Events: Case Studies , 2022, Brazilian Journal of Physics.

[24]  S. Schwartz,et al.  Bipolar Electric Field Pulses in the Martian Magnetosheath and Solar Wind; Their Implication and Impact Accessed by System Scale Size , 2022, Journal of geophysical research. Space physics.

[25]  J. Raath,et al.  A Permutation Entropy Analysis of Voyager Interplanetary Magnetic Field Observations , 2022, Journal of Geophysical Research: Space Physics.

[26]  J. Halekas,et al.  The Influence of Crustal Magnetic Fields on the Martian Bow Shock Location: A Statistical Analysis of MAVEN and Mars Express Observations , 2022, Journal of Geophysical Research: Space Physics.

[27]  Zhang Yiteng,et al.  Statistical Analysis of the Distribution and Evolution of Mirror Structures in the Martian Magnetosheath , 2022, The Astrophysical Journal.

[28]  K. Glassmeier,et al.  The Wave Telescope Technique , 2022, Journal of Geophysical Research: Space Physics.

[29]  M. Perry,et al.  The Impact of Energetic Particles on the Martian Ionosphere During a Full Solar Cycle of Radar Observations: Radar Blackouts , 2022, Journal of Geophysical Research: Space Physics.

[30]  J. Halekas,et al.  Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions , 2022, Journal of geophysical research. Space physics.

[31]  S. Kameda,et al.  The Earth’s Outer Exospheric Density Distributions Derived From PROCYON/LAICA UV Observations , 2022 .

[32]  R. Nakamura,et al.  Multi-scale evolution of Kelvin–Helmholtz waves at the Earth's magnetopause during southward IMF periods , 2022, Physics of Plasmas.

[33]  D. Marsh,et al.  Predictability of variable solar–terrestrial coupling , 2021, Annales Geophysicae.

[34]  T. Pulkkinen,et al.  Transmission of an ICME Sheath Into the Earth's Magnetosheath and the Occurrence of Traveling Foreshocks , 2021, Journal of Geophysical Research: Space Physics.

[35]  Kirolosse M. Girgis,et al.  Seasonal Variation and Geomagnetic Storm Index Effects on the Proton Flux Response in the South Atlantic Anomaly by Test Particle Simulations , 2021, SSRN Electronic Journal.

[36]  G. Murtas,et al.  Shock identification and classification in 2D magnetohydrodynamiccompressible turbulence—Orszag–Tang vortex , 2021, Experimental Results.

[37]  R. Orosei,et al.  Mars’ plasma system. Scientific potential of coordinated multipoint missions: “The next generation” , 2021, Experimental Astronomy.

[38]  J. Borovsky Magnetospheric Plasma Systems Science and Solar Wind Plasma Systems Science: The Plasma-Wave Interactions of Multiple Particle Populations , 2021, Frontiers in Astronomy and Space Sciences.

[39]  J. De Keyser,et al.  Curlometer Technique and Applications , 2021, Journal of Geophysical Research: Space Physics.

[40]  Tohru Hada,et al.  Estimation of Single Event Upset (SEU) rates inside the SAA during the geomagnetic storm event of 15 May 2005 , 2021, 2021 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE).

[41]  J. Gérard,et al.  Discrete Aurora on Mars: Insights Into Their Distribution and Activity From MAVEN/IUVS Observations , 2021, Journal of Geophysical Research: Space Physics.

[42]  Y. Wei,et al.  A Spherical Harmonic Martian Crustal Magnetic Field Model Combining Data Sets of MAVEN and MGS , 2021, Earth and Space Science.

[43]  J. Valdivia,et al.  Complexity of Magnetic-field Turbulence at Reconnection Exhausts in the Solar Wind at 1 au , 2021, The Astrophysical Journal.

[44]  D. Hassler,et al.  Radiation environment for future human exploration on the surface of Mars: the current understanding based on MSL/RAD dose measurements , 2021, The Astronomy and Astrophysics Review.

[45]  Kirolosse M. Girgis,et al.  Inner Radiation Belt Simulations of the Proton Flux Response in the South Atlantic Anomaly during the Geomagnetic Storm of 15 May 2005 , 2021 .

[46]  J. Ng,et al.  Bursty magnetic reconnection at the Earth's magnetopause triggered by high-speed jets , 2021, Physics of Plasmas.

[47]  K. M. Laundal,et al.  Exploring solar-terrestrial interactions via multiple imaging observers , 2021, Experimental Astronomy.

[48]  B. Jakosky,et al.  Test Particle Model Predictions of SEP Electron Transport and Precipitation at Mars , 2021, Journal of Geophysical Research: Space Physics.

[49]  M. Volwerk,et al.  Making Waves: Mirror Mode Structures Around Mars Observed by the MAVEN Spacecraft , 2021, Journal of geophysical research. Space physics.

[50]  X. Blanco‐Cano,et al.  Causes of Jets in the Quasi‐Perpendicular Magnetosheath , 2021, Geophysical Research Letters.

[51]  H. Opgenoorth,et al.  Ground‐Based Magnetometer Response to Impacting Magnetosheath Jets , 2021, Journal of Geophysical Research: Space Physics.

[52]  N. Omidi,et al.  Foreshock Cavities: Direct Transmission Through the Bow Shock , 2021, Journal of Geophysical Research: Space Physics.

[53]  José Rogan,et al.  Multifractal Characteristics of Geomagnetic Field Fluctuations for the Northern and Southern Hemispheres at Swarm Altitude , 2021, Entropy.

[54]  D. Sibeck,et al.  Large‐Scale Structure and Dynamics of the Magnetosphere , 2021, Magnetospheres in the Solar System.

[55]  C. Bertucci Induced Magnetospheres , 2021, Magnetospheres in the Solar System.

[56]  D. Brain Induced Magnetospheres , 2021, Magnetospheres in the Solar System.

[57]  D. Sibeck,et al.  Ion Acceleration by Foreshock Bubbles , 2021, Journal of Geophysical Research: Space Physics.

[58]  M. Temmer Space weather: the solar perspective , 2021, Living Reviews in Solar Physics.

[59]  R. Hajra,et al.  Long‐Term Variations of the Geomagnetic Activity: A Comparison Between the Strong and Weak Solar Activity Cycles and Implications for the Space Climate , 2021, Journal of Geophysical Research: Space Physics.

[60]  E. Antonova,et al.  The Impact of Turbulence on Physics of the Geomagnetic Tail , 2021, Frontiers in Astronomy and Space Sciences.

[61]  R. Lopez,et al.  A case study in support of closure of bow shock current through the ionosphere utilizing multi-point observations and simulation , 2021, Frontiers in Astronomy and Space Sciences.

[62]  S. Kameda,et al.  Soft X‐ray and ENA Imaging of the Earth's Dayside Magnetosphere , 2021, Journal of geophysical research. Space physics.

[63]  X. Blanco‐Cano,et al.  Foreshock cavitons and spontaneous hot flow anomalies: A statistical study with a global hybrid-Vlasov simulation , 2021, Annales Geophysicae.

[64]  M. Temmer,et al.  Properties of stream interaction regions at Earth and Mars during the declining phase of SC 24 , 2021, Astronomy & Astrophysics.

[65]  G. Zastenker,et al.  Plasma and Magnetic Field Turbulence in the Earth’s Magnetosheath at Ion Scales , 2021, Frontiers in Astronomy and Space Sciences.

[66]  O. Witasse,et al.  Interaction of Space Weather Phenomena with Mars Plasma Environment During Solar Minimum 23/24 , 2021, Journal of Geophysical Research: Space Physics.

[67]  D. Mitchell,et al.  Observations of Energized Electrons in the Martian Magnetosheath , 2020, Journal of Geophysical Research: Space Physics.

[68]  L. B. Rubio,et al.  Lagrangian chaotic saddles and objective vortices in solar plasmas. , 2020, Physical review. E.

[69]  J. Luhmann,et al.  Variability of the Solar Wind Flow Asymmetry in the Martian Magnetosheath Observed by MAVEN , 2020, Geophysical Research Letters.

[70]  J. Valdivia,et al.  A Nonlinear System Science Approach to Find the Robust Solar Wind Drivers of the Multivariate Magnetosphere , 2020, Space Weather.

[71]  M. Lester,et al.  Mars' Ionopause: A Matter of Pressures , 2020, Journal of Geophysical Research: Space Physics.

[72]  X. Blanco‐Cano,et al.  Magnetosheath Jets and Plasmoids: Characteristics and Formation Mechanisms from Hybrid Simulations , 2020, The Astrophysical Journal.

[73]  X. Blanco‐Cano,et al.  Magnetosheath Microstructure: Mirror Mode Waves and Jets during Southward IP Magnetic Field , 2020, Journal of Geophysical Research: Space Physics.

[74]  B. Jakosky,et al.  Foreshock Cavities at Venus and Mars , 2020, Journal of Geophysical Research: Space Physics.

[75]  Kirolosse M. Girgis,et al.  Solar wind parameter and seasonal variation effects on the South Atlantic Anomaly using Tsyganenko Models , 2020, Earth, Planets and Space.

[76]  R. Nakamura,et al.  Decay of Kelvin‐Helmholtz Vortices at the Earth's Magnetopause Under Pure Southward IMF Conditions , 2020, Geophysical research letters.

[77]  B. Jakosky,et al.  The Magnetic Structure of the Subsolar MPB Current Layer From MAVEN Observations: Implications for the Hall Electric Force , 2020, Geophysical Research Letters.

[78]  E. Echer,et al.  Statistical analysis of solar wind parameter variation with heliospheric distance: Ulysses observations in the ecliptic plane , 2020 .

[79]  J. Sauvaud,et al.  Magnetic Reconnection Inside a Flux Transfer Event‐Like Structure in Magnetopause Kelvin‐Helmholtz Waves , 2020, Journal of Geophysical Research: Space Physics.

[80]  E. Echer,et al.  Wavelet analysis of low frequency plasma oscillations in the magnetosheath of Mars , 2020 .

[81]  C. Russell,et al.  Magnetic Reconnection Inside a Flux Rope Induced by Kelvin‐Helmholtz Vortices , 2020, Journal of geophysical research. Space physics.

[82]  Kirolosse M. Girgis,et al.  Space Weather Effects on Proton Flux Variations in the South Atlantic Anomaly: A Numerical Study performed by Test Particle Simulations , 2020 .

[83]  R. Keppens,et al.  Magnetohydrodynamic Nonlinearities in Sunspot Atmospheres: Chromospheric Detections of Intermediate Shocks , 2020, The Astrophysical Journal.

[84]  M. Janvier,et al.  Magnetic twist profile inside magnetic clouds derived with a superposed epoch analysis , 2020, Astronomy & Astrophysics.

[85]  P. Cassak,et al.  Magnetic Reconnection in the Space Sciences: Past, Present, and Future , 2020, Journal of Geophysical Research: Space Physics.

[86]  A. Degeling,et al.  Propagation properties of foreshock cavitons: Cluster observations , 2020, Science China Technological Sciences.

[87]  D. Stansby,et al.  Highly structured slow solar wind emerging from an equatorial coronal hole , 2019, Nature.

[88]  V. Ermakov,et al.  Propagation properties of Hot Flow Anomalies at Mars: MAVEN observations , 2019 .

[89]  D. Mitchell,et al.  Collisionless Electron Dynamics in the Magnetosheath of Mars , 2019, Geophysical Research Letters.

[90]  A. Dmitriev,et al.  Quiet Time Structured Pc1 Waves Generated During Transient Foreshock , 2019, Journal of Geophysical Research: Space Physics.

[91]  E. Echer,et al.  Correlation length around Mars: A statistical study with MEX and MAVEN observations , 2019, Earth and Planetary Physics.

[92]  B. Jakosky,et al.  Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations , 2019, Journal of Geophysical Research: Space Physics.

[93]  F. Ramos,et al.  Extreme value theory in the solar wind: the role of current sheets , 2019, Monthly Notices of the Royal Astronomical Society.

[94]  A. Mannucci,et al.  The Solar and Interplanetary Causes of Superstorms (Minimum Dst ≤ −250 nT) During the Space Age , 2019, Journal of Geophysical Research: Space Physics.

[95]  R. Orosei,et al.  Origin of the Extended Mars Radar Blackout of September 2017 , 2019, Journal of Geophysical Research: Space Physics.

[96]  Erwan Thébault,et al.  A New Model of the Crustal Magnetic Field of Mars Using MGS and MAVEN , 2019, Journal of geophysical research. Planets.

[97]  M. Lester,et al.  The Martian Bow Shock Over Solar Cycle 23–24 as Observed by the Mars Express Mission , 2019, Journal of Geophysical Research: Space Physics.

[98]  F. Plaschke,et al.  Jets in the magnetosheath: IMF control of where they occur , 2019, Annales Geophysicae.

[99]  R. Bruno Intermittency in Solar Wind Turbulence From Fluid to Kinetic Scales , 2019, Earth and Space Science.

[100]  I. S. Requerey,et al.  Supergranular turbulence in the quiet Sun: Lagrangian coherent structures , 2019, Monthly Notices of the Royal Astronomical Society.

[101]  V. Angelopoulos,et al.  Direct observations of a surface eigenmode of the dayside magnetopause , 2019, Nature Communications.

[102]  M. Kivelson,et al.  Jensen–Shannon Complexity Measurements in Solar Wind Magnetic Field Fluctuations , 2019, The Astrophysical Journal.

[103]  B. Lembège,et al.  Identifying 3‐D Vortex Structures At/Around the Magnetopause Using a Tetrahedral Satellite Configuration , 2018, Journal of Geophysical Research: Space Physics.

[104]  T. Dachev South-Atlantic Anomaly magnetic storms effects as observed outside the International Space Station in 2008–2016 , 2018, Journal of Atmospheric and Solar-Terrestrial Physics.

[105]  B. Jakosky,et al.  Significant Space Weather Impact on the Escape of Hydrogen From Mars , 2018, Geophysical Research Letters.

[106]  B. Jakosky,et al.  Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock , 2018, Journal of Geophysical Research: Space Physics.

[107]  X. Blanco‐Cano,et al.  Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation , 2018, Annales Geophysicae.

[108]  I. J. Rae,et al.  Dayside Magnetospheric and Ionospheric Responses to a Foreshock Transient on 25 June 2008: 1. FLR Observed by Satellite and Ground‐Based Magnetometers , 2018, Journal of Geophysical Research: Space Physics.

[109]  W. Gonzalez,et al.  How Different Are the Solar Wind‐Interplanetary Conditions and the Consequent Geomagnetic Activity During the Ascending and Early Descending Phases of the Solar Cycles 23 and 24? , 2018, Journal of Geophysical Research: Space Physics.

[110]  Juan Alejandro Valdivia,et al.  The Earth’s Magnetosphere: A Systems Science Overview and Assessment , 2018, Surveys in Geophysics.

[111]  N. Omidi,et al.  Jets Downstream of Collisionless Shocks , 2018, Space Science Reviews.

[112]  D. Mitchell,et al.  The Three‐Dimensional Bow Shock of Mars as Observed by MAVEN , 2018, Journal of Geophysical Research: Space Physics.

[113]  S. Wing,et al.  Imaging Plasma Density Structures in the Soft X-Rays Generated by Solar Wind Charge Exchange with Neutrals , 2018, Space Science Reviews.

[114]  B. Jakosky,et al.  The Twisted Configuration of the Martian Magnetotail: MAVEN Observations , 2018 .

[115]  F. Lefévre,et al.  Global Aurora on Mars During the September 2017 Space Weather Event , 2018, Geophysical Research Letters.

[116]  R. Lopez The Bow Shock Current System , 2018 .

[117]  B. Jakosky,et al.  Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations , 2018 .

[118]  V. Angelopoulos,et al.  In Situ Observations of a Magnetosheath High‐Speed Jet Triggering Magnetopause Reconnection , 2018 .

[119]  I. Richardson Solar wind stream interaction regions throughout the heliosphere , 2018, Living Reviews in Solar Physics.

[120]  R. Funase,et al.  Ecliptic North‐South Symmetry of Hydrogen Geocorona , 2017 .

[121]  R. Nakamura,et al.  Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas , 2017, Nature Communications.

[122]  F. Califano,et al.  Magnetized Kelvin–Helmholtz instability: theory and simulations in the Earth’s magnetosphere context , 2017, Journal of Plasma Physics.

[123]  B. Jakosky,et al.  Spontaneous hot flow anomalies at Mars and Venus , 2017 .

[124]  N. Omidi,et al.  Traveling Foreshocks and Transient Foreshock Phenomena , 2017, 1711.01321.

[125]  B. Jakosky,et al.  Electric and magnetic variations in the near‐Mars environment , 2017 .

[126]  H. Zhang,et al.  Global ULF waves generated by a hot flow anomaly , 2017 .

[127]  J. Eastwood,et al.  Statistical properties of solar wind reconnection exhausts , 2017 .

[128]  M. L. Mays,et al.  Mars plasma system response to solar wind disturbances during solar minimum , 2017 .

[129]  G. Haller,et al.  Objective vortex detection in an astrophysical dynamo , 2017 .

[130]  V. Angelopoulos,et al.  THEMIS satellite observations of hot flow anomalies at Earth's bow shock , 2017 .

[131]  B. Jakosky,et al.  MAVEN observations of the solar cycle 24 space weather conditions at Mars , 2017 .

[132]  H.-Q. Hu,et al.  Observational properties of dayside throat aurora and implications on the possible generation mechanisms , 2017 .

[133]  B. Jakosky,et al.  Characterization of turbulence in the Mars plasma environment with MAVEN observations , 2017 .

[134]  B. Jakosky,et al.  Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .

[135]  B. Jakosky,et al.  MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields , 2017 .

[136]  B. Jakosky,et al.  Discovery of a proton aurora at Mars , 2016, Nature Astronomy.

[137]  M. Loew,et al.  GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION , 2016 .

[138]  J. Borovsky,et al.  Preface: Unsolved problems of magnetospheric physics , 2016 .

[139]  B. Jakosky,et al.  Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere , 2016 .

[140]  R. Hajra,et al.  A study on the main periodicities in interplanetary magnetic field Bz component and geomagnetic AE index during HILDCAA events using wavelet analysis , 2016 .

[141]  R. Orosei,et al.  Annual variations in the Martian bow shock location as observed by the Mars Express mission , 2016 .

[142]  J. Matzka,et al.  Changes in solar quiet magnetic variations since the Maunder Minimum: A comparison of historical observations and model simulations , 2016 .

[143]  J. Slavin,et al.  Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets , 2016 .

[144]  S. E. Jaskulek,et al.  Energetic particle imaging: The evolution of techniques in imaging high‐energy neutral atom emissions , 2016 .

[145]  P. Démoulin,et al.  Quantitative model for the generic 3D shape of ICMEs at 1 AU , 2016, 1608.08550.

[146]  V. Carbone,et al.  RELAXATION PROCESSES WITHIN FLUX ROPES IN SOLAR WIND , 2016 .

[147]  V. Angelopoulos,et al.  Multipoint observations of the structure and evolution of foreshock bubbles and their relation to hot flow anomalies , 2016 .

[148]  B. Jakosky,et al.  MAVEN observations of partially developed Kelvin‐Helmholtz vortices at Mars , 2016 .

[149]  David G. Sibeck,et al.  Wide field‐of‐view soft X‐ray imaging for solar wind‐magnetosphere interactions , 2016 .

[150]  E. Dubinin,et al.  Ultra‐Low‐Frequency Waves at Venus and Mars , 2016 .

[151]  Robert J. Lillis,et al.  Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time‐dependent MHD study , 2015 .

[152]  B. Jakosky,et al.  A hot flow anomaly at Mars , 2015 .

[153]  Gábor Tóth,et al.  MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations , 2015 .

[154]  B. Jakosky,et al.  Low‐frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions , 2015 .

[155]  B. Jakosky,et al.  Neutral density response to solar flares at Mars , 2015 .

[156]  C. Russell,et al.  MAVEN observations of the response of Mars to an interplanetary coronal mass ejection , 2015, Science.

[157]  B. Jakosky,et al.  Discovery of diffuse aurora on Mars , 2015, Science.

[158]  T. Karlsson,et al.  On the origin of magnetosheath plasmoids and their relation to magnetosheath jets , 2015 .

[159]  Anna K. Wendt,et al.  Antiquity of the South Atlantic Anomaly and evidence for top-down control on the geodynamo , 2015, Nature Communications.

[160]  Hongfei Chen,et al.  Short‐term variations of the inner radiation belt in the South Atlantic anomaly , 2015 .

[161]  A. Dmitriev,et al.  Large‐scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations , 2015, 1508.05229.

[162]  Brian Hamilton,et al.  International Geomagnetic Reference Field: the 12th generation , 2015, Earth, Planets and Space.

[163]  F. Lefévre,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2015, Space Science Reviews.

[164]  Joachim Raeder,et al.  Ubiquity of Kelvin–Helmholtz waves at Earth's magnetopause , 2014, Nature Communications.

[165]  Yueqiang Sun,et al.  Solar cycle variations of trapped proton flux in the inner radiation belt , 2014 .

[166]  A. Chian,et al.  On-off intermittency and amplitude-phase synchronization in Keplerian shear flows , 2014, 1411.3998.

[167]  L. Přech,et al.  STATISTICAL STUDY OF RECONNECTION EXHAUSTS IN THE SOLAR WIND , 2014 .

[168]  R. Wicks,et al.  Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[169]  T. Horbury,et al.  Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations , 2014, 1409.0390.

[170]  D. Sibeck,et al.  Magnetosheath filamentary structures formed by ion acceleration at the quasi‐parallel bow shock , 2014 .

[171]  B. Tsurutani,et al.  Relativistic electron acceleration during high‐intensity, long‐duration, continuous AE activity (HILDCAA) events: Solar cycle phase dependences , 2014 .

[172]  E. Echer,et al.  A multifractal approach applied to the magnetic field turbulence in Jupiter's magnetosheath , 2014 .

[173]  S. Shadden,et al.  DETECTION OF COHERENT STRUCTURES IN PHOTOSPHERIC TURBULENT FLOWS , 2013, 1312.2405.

[174]  C. Russell,et al.  Statistical study of foreshock cavitons , 2013 .

[175]  R. Walker,et al.  Dipolarization and turbulence in the plasma sheet during a substorm: THEMIS observations and global MHD simulations , 2013 .

[176]  Yongliao Zou,et al.  Moon‐based EUV imaging of the Earth's Plasmasphere: Model simulations , 2013 .

[177]  V. Angelopoulos,et al.  Anti-sunward high-speed jets in the subsolar magnetosheath , 2013 .

[178]  B. Tsurutani,et al.  Solar cycle dependence of High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors? , 2013 .

[179]  H. Karimabadi,et al.  Three‐dimensional dynamics of vortex‐induced reconnection and comparison with THEMIS observations , 2013 .

[180]  I. Richardson The Formation of Cirs at Stream-Stream Interfaces and Resultant Geomagnetic Activity , 2013 .

[181]  Q. Zong,et al.  Hot flow anomaly formation and evolution: Cluster observations , 2013 .

[182]  N. Omidi,et al.  Compressional boundaries in the Earth's foreshock , 2013 .

[183]  H. Zhang,et al.  Spontaneous hot flow anomalies at quasi‐parallel shocks: 1. Observations , 2013 .

[184]  V. Angelopoulos,et al.  First observations of foreshock bubbles upstream of Earth's bow shock: Characteristics and comparisons to HFAs , 2013 .

[185]  F. Guarnieri The Nature of Auroras During High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA) Events: 1998 to 2001 , 2013 .

[186]  T. Horbury,et al.  Magnetosheath dynamic pressure enhancements: occurrence and typical properties , 2013 .

[187]  X. Blanco‐Cano,et al.  Dynamics of the foreshock compressional boundary and its connection to foreshock cavities , 2013 .

[188]  B. Tsurutani,et al.  Interplanetary origins of moderate (−100 nT < Dst ≤ −50 nT) geomagnetic storms during solar cycle 23 (1996–2008) , 2013 .

[189]  V. Angelopoulos,et al.  The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity , 2013 .

[190]  J. Gosling,et al.  MAGNETIC RECONNECTION IN THE SOLAR WIND AT CURRENT SHEETS ASSOCIATED WITH EXTREMELY SMALL FIELD SHEAR ANGLES , 2012 .

[191]  L. Přech,et al.  Asymmetric magnetosphere deformation driven by hot flow anomaly(ies) , 2012 .

[192]  H. Hasegawa Structure and Dynamics of the Magnetopause and Its Boundary Layers , 2012 .

[193]  T. Horbury,et al.  Magnetosheath pressure pulses: Generation downstream of the bow shock from solar wind discontinuities , 2012 .

[194]  T. Karlsson,et al.  Localized density enhancements in the magnetosheath: Three‐dimensional morphology and possible importance for impulsive penetration , 2012 .

[195]  J. Gonzalez-Esparza Solar-cycle variations of interaction regions: in-ecliptic observations from 1 to 5 AU , 2012 .

[196]  E. Amata,et al.  Super fast plasma streams as drivers of transient and anomalous magnetospheric dynamics , 2012 .

[197]  N. Omidi,et al.  Foreshock compressional boundaries observed by Cluster , 2011 .

[198]  F. Duru,et al.  The Induced Magnetospheres of Mars, Venus, and Titan , 2011 .

[199]  H. Zou,et al.  Response of high-energy protons of the inner radiation belt to large magnetic storms , 2011 .

[200]  M. Lester,et al.  Atmospheric erosion of Venus during stormy space weather , 2011 .

[201]  M. Kuznetsova,et al.  Kelvin‐Helmholtz waves under southward interplanetary magnetic field , 2011 .

[202]  T. Horbury,et al.  Transient Pc3 wave activity generated by a hot flow anomaly: Cluster, Rosetta, and ground-based observations , 2011 .

[203]  J. Valdivia,et al.  Estimation of the eddy-diffusion coefficients in the plasma sheet using THEMIS satellite data , 2011 .

[204]  Laurent Larger,et al.  Distinguishing fingerprints of hyperchaotic and stochastic dynamics in optical chaos from a delayed opto-electronic oscillator. , 2011, Optics letters.

[205]  C. Russell,et al.  Multi-spacecraft study of foreshock cavitons upstream of the quasi-parallel bow shock , 2011 .

[206]  J. Valdivia,et al.  Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data , 2011 .

[207]  S. Schwartz,et al.  Foreshock cavities and internal foreshock boundaries , 2011 .

[208]  B. Tsurutani,et al.  Interplanetary Origin of Intense, Superintense and Extreme Geomagnetic Storms , 2011 .

[209]  A. S. Potapov,et al.  Experimental evidence for direct penetration of ULF waves from the solar wind and their possible effect on acceleration of radiation belt electrons , 2010 .

[210]  R. Walker,et al.  Global magnetohydrodynamic simulation of reconnection and turbulence in the plasma sheet , 2010 .

[211]  M. Kivelson,et al.  Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity , 2010 .

[212]  V. Angelopoulos,et al.  Time History of Events and Macroscale Interactions during Substorms observations of a series of hot flow anomaly events , 2010 .

[213]  A. Brandenburg,et al.  LAGRANGIAN COHERENT STRUCTURES IN NONLINEAR DYNAMOS , 2010, 1011.6327.

[214]  N. Omidi,et al.  Foreshock bubbles and their global magnetospheric impacts , 2010 .

[215]  J. Linker,et al.  A MODEL FOR THE SOURCES OF THE SLOW SOLAR WIND , 2010, 1102.3704.

[216]  X. Blanco‐Cano Bow Shocks In The Solar Wind: Lessons Towards Understanding Interplanetary Shocks , 2010 .

[217]  O. D. Constantinescu,et al.  Magnetopause surface oscillation frequencies at different solar wind conditions , 2009 .

[218]  V. Angelopoulos,et al.  Plasma sheet thickness during a bursty bulk flow reversal , 2009 .

[219]  V. Angelopoulos,et al.  THEMIS ground-space observations during the development of auroral spirals , 2009 .

[220]  Uppsala,et al.  Supermagnetosonic jets behind a collisionless quasiparallel shock. , 2009, Physical review letters.

[221]  I. Dandouras,et al.  Magnetosheath cavities: case studies using Cluster observations , 2009 .

[222]  S. Cranmer Coronal Holes , 2009, Living reviews in solar physics.

[223]  V. Angelopoulos,et al.  Observations of plasma vortices in the vicinity of flow-braking: a case study , 2009 .

[224]  V. Angelopoulos,et al.  THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly , 2009 .

[225]  N. Omidi,et al.  Foreshock compressional boundary , 2009 .

[226]  Luciano Zunino,et al.  Forbidden patterns, permutation entropy and stock market inefficiency , 2009 .

[227]  A. Chian,et al.  A novel type of intermittency in a non-linear dynamo in a compressible flow , 2009, 0907.2378.

[228]  A. Chian,et al.  Cluster and ACE observations of phase synchronization in intermittent magnetic field turbulence: a comparative study of shocked and unshocked solar wind , 2009 .

[229]  X. Blanco‐Cano,et al.  Mirror‐mode storms: STEREO observations of protracted generation of small amplitude waves , 2009 .

[230]  S. Poedts,et al.  Linking two consecutive nonmerging magnetic clouds with their solar sources , 2009, 1212.5546.

[231]  吕一旭 Yixu Lu 引言 (Introduction) , 2009, Provincial China.

[232]  P. Dmitruk,et al.  STATISTICAL ANALYSIS OF DISCONTINUITIES IN SOLAR WIND ACE DATA AND COMPARISON WITH INTERMITTENT MHD TURBULENCE , 2009 .

[233]  C. Holmlund,et al.  The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity , 2008 .

[234]  Carlos Frederico Cid,et al.  Comment on “Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ −250 nT) during solar cycle 23” by E. Echer et al. , 2008 .

[235]  P. Dmitruk,et al.  Intermittent MHD structures and classical discontinuities , 2008 .

[236]  J. Borovsky Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?: FLUX TUBE TEXTURE OF SOLAR WIND , 2008 .

[237]  S. Barabash,et al.  Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX‐ASPERA‐3 and MEX‐MARSIS observations , 2008 .

[238]  Ezequiel Echer,et al.  Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006) , 2008 .

[239]  M. Maggi,et al.  Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006 , 2008 .

[240]  S. Schwartz,et al.  The statistics of foreshock cavities: results of a Cluster survey , 2007 .

[241]  M. Fujimoto,et al.  Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth's magnetopause. , 2007, Physical review letters.

[242]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[243]  Caiyan Lin,et al.  From Rankine‐Hugoniot relation fitting procedure: Tangential discontinuity or intermediate/slow shock? , 2007 .

[244]  N. Omidi Formation of cavities in the foreshock , 2007 .

[245]  S. Inutsuka,et al.  Evolutionary Conditions in Dissipative MHD Systems Revisited , 2007, 0707.0355.

[246]  Y. Kato,et al.  Classification of geomagnetic micropulsations , 2007 .

[247]  A. Chian,et al.  Intermittent nature of solar wind turbulence near the Earth's bow shock: phase coherence and non-Gaussianity. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[248]  Christopher T. Russell,et al.  Space weather at Venus and its potential consequences for atmosphere evolution , 2007 .

[249]  Konrad Dennerl,et al.  X-Rays From Mars , 2007 .

[250]  B. Tsurutani,et al.  Interplanetary origin of intense geomagnetic storms (Dst < −100 nT) during solar cycle 23 , 2007 .

[251]  David Andrew Brain,et al.  Mars Global Surveyor Measurements of the Martian Solar Wind Interaction , 2007 .

[252]  R. Lundin,et al.  Energetic Hydrogen and Oxygen Atoms Observed on the Nightside of Mars , 2007 .

[253]  P. Démoulin,et al.  A new model-independent method to compute magnetic helicity in magnetic clouds , 2006 .

[254]  W. Gonzalez,et al.  Geoeffectiveness of corotating interaction regions as measured by Dst index , 2006 .

[255]  W. Gonzalez,et al.  The 17–22 October (1999) solar-interplanetary-geomagnetic event: Very intense geomagnetic storm associated with a pressure balance between interplanetary coronal mass ejection and a high-speed stream , 2006 .

[256]  Y. Kasahara,et al.  Corotating solar wind streams and recurrent geomagnetic activity: A review , 2006 .

[257]  M. Maggi,et al.  First ENA observations at Mars: ENA emissions from the martian upper atmosphere , 2006 .

[258]  T. Horbury,et al.  Kinetic aspects of foreshock cavities , 2006 .

[259]  M. Maggi,et al.  Electron oscillations in the induced martian magnetosphere , 2006 .

[260]  Konrad Dennerl,et al.  First observation of Mars with XMM-Newton: high resolution X-ray spectroscopy with RGS , 2006 .

[261]  B. Reinisch,et al.  Effects of Solar Flares on the Ionosphere of Mars , 2006, Science.

[262]  S. Barabash,et al.  Planetary ENA imaging: Effects of different interaction models for Mars , 2006 .

[263]  Vincenzo Carbone,et al.  The Solar Wind as a Turbulence Laboratory , 2005 .

[264]  Oleg Korablev,et al.  Discovery of an aurora on Mars , 2005, Nature.

[265]  C. Bandt Ordinal time series analysis , 2005 .

[266]  Z. Voros,et al.  Magnetic turbulence in the plasma sheet , 2004, physics/0411230.

[267]  L. Burlaga,et al.  Multi‐scale probability distributions of solar wind speed fluctuations at 1 AU described by a generalized Tsallis distribution , 2004 .

[268]  M. Acuna,et al.  Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail , 2004 .

[269]  K. Klein,et al.  Acceleration and Propagation of Solar Energetic Particles , 2004, 1705.07274.

[270]  J. Slavin,et al.  Bow Shock and Upstream Phenomena at Mars , 2004 .

[271]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[272]  R. Wolf,et al.  Electric fields deduced from plasmapause motion in IMAGE EUV images , 2004 .

[273]  Dennis L. Gallagher,et al.  Extreme Ultraviolet Imager Observations of the Structure and Dynamics of the Plasmasphere , 2003 .

[274]  Joseph E. Borovsky,et al.  MHD turbulence in the Earth's plasma sheet: Dynamics, dissipation, and driving , 2003 .

[275]  E. Antonova,et al.  Intermittency of magnetospheric dynamics through non‐Gaussian distribution function of PC‐index fluctuations , 2003 .

[276]  D. Mitchell,et al.  Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations , 2003 .

[277]  Robert Ecoffet,et al.  In-flight observations of the radiation environment and its effects on devices in the SAC-C polar orbit , 2002 .

[278]  H. Shinagawa,et al.  Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause , 2002 .

[279]  A. Weatherwax,et al.  Traveling convection vortices induced by solar wind tangential discontinuities , 2002 .

[280]  Y. Kamide,et al.  Inconsistency of Magnetic Field and Plasma Velocity Variations in the Distant Plasma Sheet , 2002 .

[281]  S. Poedts,et al.  Disintegration and reformation of intermediate‐shock segments in three‐dimensional MHD bow shock flows , 2001 .

[282]  V. Carbone,et al.  Identifying intermittency events in the solar wind , 2001 .

[283]  M. Dunlop,et al.  Cluster as a wave telescope - first results from the fluxgate magnetometer , 2001 .

[284]  Ken Mela,et al.  Correlation Length and Fractal Dimension Interpretation from Seismic Data Using Variograms and Power Spectra,” Geophysics 66 , 2001 .

[285]  L. Burlaga Lognormal and multifractal distributions of the heliospheric magnetic field , 2001 .

[286]  D. Mitchell,et al.  The global magnetic field of Mars and implications for crustal evolution , 2001 .

[287]  D. Mitchell,et al.  Hot diamagnetic cavities upstream of the Martian bow shock , 2001 .

[288]  L. Sorriso-Valvo,et al.  Intermittency in plasma turbulence , 2001, nlin/0101053.

[289]  M. Lampton,et al.  Medium energy neutral atom (MENA) imager for the IMAGE mission , 2000 .

[290]  D. Baker,et al.  The Dst geomagnetic response as a function of storm phase and amplitude and the solar wind electric field , 1999 .

[291]  Vassilis Angelopoulos,et al.  Evidence for intermittency in Earth’s plasma sheet and implications for self-organized criticality , 1999 .

[292]  D. Baker,et al.  The Role of Self-Organized Criticality in the Substorm Phenomenon and its Relation to Localized Reconnection in the Magnetospheric Plasma Sheet , 1999 .

[293]  I. Ovchinnikov,et al.  Magnetostatically equilibrated plasma sheet with developed medium-scale turbulence : Structure and implications for substorm dynamics , 1999 .

[294]  Lou‐Chuang Lee,et al.  Reconnection layers in two-dimensional magnetohydrodynamics and comparison with the one-dimensional Riemann problem , 1999 .

[295]  Bruce T. Tsurutani,et al.  Interplanetary origin of geomagnetic storms , 1999 .

[296]  David G. Sibeck,et al.  Comprehensive study of the magnetospheric response to a hot flow anomaly , 1999 .

[297]  P. Veltri MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures , 1999 .

[298]  H. De Sterck,et al.  Characteristic analysis of a complex two-dimensional magnetohydrodynamic bow shock flow with steady compound shocks , 1999 .

[299]  S. Poedts,et al.  Complex magnetohydrodynamic bow shock topology in field-aligned low-β flow around a perfectly conducting cylinder , 1998 .

[300]  A. Ridley,et al.  Multi‐instrument analysis of the ionospheric signatures of a hot flow anomaly occurring on July 24, 1996 , 1998 .

[301]  K. Sauer,et al.  Nonlinear MHD waves and discontinuities in the Martian magnetosheath. Observations and 2D bi-ion MHD simulations , 1998 .

[302]  J. Sauvaud,et al.  Fast Deformation of Dayside Magnetopause , 1998 .

[303]  L. Přech,et al.  Transient flux enhancements in the magnetosheath , 1998 .

[304]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[305]  H. K. Wong,et al.  Observational constraints on the dynamics of the interplanetary magnetic field dissipation range , 1998 .

[306]  J. Sauvaud,et al.  Gross deformation of the dayside magnetopause , 1998 .

[307]  E. Marsch,et al.  Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind , 1997 .

[308]  E. Smith Three-dimensional nature of interaction regions- Pioneer, Voyager, and Ulysses solar cycle variations , 1997 .

[309]  R. Elphic,et al.  The Earth's plasma sheet as a laboratory for flow turbulence in high-β MHD , 1997, Journal of Plasma Physics.

[310]  S. Schwartz,et al.  Low-frequency waves in the Earth’s magnetosheath: present status , 1996 .

[311]  E. Smith,et al.  Solar Cycle Dependence of the Solar Wind Dynamics: Pioneer, Voyager, and Ulysses from 1 to 5 AU , 1996 .

[312]  Richard E. Denton,et al.  Bounded anisotropy fluid model for ion temperature evolution applied to AMPTE/IRM magnetosheath data , 1995 .

[313]  B. Tsurutani,et al.  Magnetic holes in the solar wind and their relation to mirror-mode structures , 1995 .

[314]  Muamer Zukic,et al.  A far ultraviolet imager for the International Solar-Terrestrial Physics Mission , 1995 .

[315]  T. Hada Evolutionary conditions in the dissipative MHD system: Stability of intermediate MHD shock waves , 1994 .

[316]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[317]  A. L. L. Belle-Hamer Magnetic reconnection in the presence of sheared plasma flow. Ph.D. Thesis , 1994 .

[318]  J. Chao,et al.  Observations of an intermediate shock in interplanetary space , 1993 .

[319]  C. Russell,et al.  Observational test of hot flow anomaly formation by the interaction of a magnetic discontinuity with the bow shock , 1993 .

[320]  B. Anderson,et al.  Magnetic pulsations from 0.1 to 4.0 Hz and associated plasma properties in the Earth's subsolar magnetosheath and plasma depletion layer , 1993 .

[321]  Brian J. Anderson,et al.  Ion anisotropy instabilities in the magnetosheath , 1993 .

[322]  C. Russell,et al.  Mirror and Alfvénic waves observed by ISEE 1-2 during crossings of the Earth's bow shock , 1992 .

[323]  O. Vaisberg The solar wind interaction with Mars: A review of results from previous soviet missions to Mars , 1992 .

[324]  Lou‐Chuang Lee,et al.  The role of intermediate shocks in magnetic reconnection , 1992 .

[325]  B. Anderson,et al.  He2+ and H+ dynamics in the subsolar magnetosheath and plasma depletion layer , 1991 .

[326]  J. Phillips,et al.  Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections , 1991 .

[327]  A. Hundhausen,et al.  Coronal mass ejection shock fronts containing the two types of intermediate shocks , 1990 .

[328]  A. Hundhausen,et al.  MHD intermediate shocks in coronal mass ejections , 1990 .

[329]  C. Russell,et al.  Upstream waves at Mars: Phobos observations , 1990 .

[330]  C. Russell,et al.  The magnetotail of Mars: Phobos observations , 1990 .

[331]  Roger D. Blandford,et al.  MHD intermediate shock discontinuities. Part 1. Rankine—Hugoniot conditions , 1989, Journal of Plasma Physics.

[332]  S. Schwartz,et al.  Colliding plasma structures: Current sheet and perpendicular shock , 1988 .

[333]  B. Tsurutani,et al.  Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979) , 1988 .

[334]  F. Scarf,et al.  Expectations for the microphysics of the Mars‐solar wind interaction , 1988 .

[335]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[336]  C. Wu,et al.  The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical? , 1988 .

[337]  Wolfgang Baumjohann,et al.  Simultaneous observation of Pc 3–4 pulsations in the solar wind and in the Earth's magnetosphere , 1987 .

[338]  Bruce T. Tsurutani,et al.  Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT) , 1987 .

[339]  C. Wu,et al.  On MHD intermediate shocks , 1987 .

[340]  B. Tsurutani,et al.  The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains , 1987 .

[341]  C. Russell,et al.  Hot, diamagnetic cavities upstream from the Earth's bow shock , 1986 .

[342]  S. Schwartz,et al.  An active current sheet in the solar wind , 1985, Nature.

[343]  E. E. Antonova The nonadiabatic character of diffusion and the equalization of concentration and temperature in the plasma sheet of the earth magnetosphere , 1985 .

[344]  S. Schwartz,et al.  On the theoretical/observational comparison of field‐aligned ion beams in the Earth's foreshock , 1984 .

[345]  W. F. Stuart,et al.  The rate of occurrence of dayside Pc 3,4 pulsations: The L‐value dependence of the IMF cone angle effect , 1983 .

[346]  W. Matthaeus,et al.  Evaluation of magnetic helicity in homogeneous turbulence , 1982 .

[347]  James A. Slavin,et al.  Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape , 1981 .

[348]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[349]  W. Matthaeus,et al.  SELECTIVE DECAY HYPOTHESIS AT HIGH MECHANICAL AND MAGNETIC REYNOLDS NUMBERS * , 1980 .

[350]  W. Feldman,et al.  Deceleration of the solar wind upstream from the earth's bow shock and the origin of diffuse upstream ions , 1980 .

[351]  J. Olson,et al.  A contribution to ULF activity in the Pc 3-4 range correlated with IMF radial orientation. [geomagnetic micropulsations , 1977 .

[352]  J. Zirker Coronal holes and high‐speed wind streams , 1977 .

[353]  E. Smith,et al.  Observations of interaction regions and corotating shocks between one and five AU - Pioneers 10 and 11. [solar wind streams] , 1976 .

[354]  E. Roelof,et al.  A coronal hole and its identification as the source of a high velocity solar wind stream , 1973 .

[355]  R. Eather Auroral proton precipitation and hydrogen emissions , 1967 .

[356]  C. S. Scearce,et al.  Initial results of the imp 1 magnetic field experiment , 1964 .

[357]  Masahisa Sugiura,et al.  Hourly values of equatorial dst for the igy , 1963 .

[358]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[359]  F. H. King Aurora , 1883, Science.

[360]  Simon,et al.  of mirror mode-like structures in the magnetosheaths of unmagnetised planets: 1. Mars as observed by the MAVEN spacecraft” , 2023 .

[361]  Kirolosse M. Girgis,et al.  Radiation Analysis of LEO Mission in the South Atlantic Anomaly During Geomagnetic Storm , 2022, IEEE Journal of Radio Frequency Identification.

[362]  R. S. Turley,et al.  The future of plasmaspheric extreme ultraviolet (EUV) imaging , 2022, Magnetospheric Imaging.

[363]  Tielong Zhang,et al.  Statistical Properties of Small-scale Linear Magnetic Holes in the Martian Magnetosheath , 2021 .

[364]  W. S. Vincent,et al.  Geospace imaging using Thomson scattering , 2009 .

[365]  C. Russell,et al.  Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry , 2009 .

[366]  V. Angelopoulos,et al.  Magnetic island formation between large‐scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field , 2009 .

[367]  H. Feng,et al.  Observations of a 2→3 Type Interplanetary Intermediate Shock , 2008 .

[368]  M. Maggi,et al.  The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission , 2006 .

[369]  P. Démoulin,et al.  Large scale MHD properties of interplanetary magnetic clouds , 2005 .

[370]  R. Treumann,et al.  The Foreshock , 2005 .

[371]  J. Valdivia,et al.  The magnetosphere as a complex system , 2005 .

[372]  E. E. Antonova Magnetostatic equilibrium and turbulent transport in Earth’s magnetosphere: A review of experimental observation data and theoretical approaches , 2002 .

[373]  D. Mitchell,et al.  MGS MAG/ER observations at the magnetic pileup boundary of Mars: draping enhancement and low frequency waves , 2002 .

[374]  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Discovery of X–rays from Mars with Chandra , 2002 .

[375]  J. Quinn,et al.  The low-energy neutral atom imager for IMAGE , 2000 .

[376]  D. Mitchell,et al.  Evidence of electron impact ionization in the magnetic pileup boundary of Mars , 1999 .

[377]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[378]  K. Sauer,et al.  The Martian Magnetosphere - A Laboratory for Bi-Ion Plasma Investigations , 1998 .

[379]  R. Lundin,et al.  The Martian magnetosheath: Phobos-2 observations , 1997 .

[380]  S. Schwartz Hot flow anomalies near the Earth's bow shock , 1995 .

[381]  H. Rosenbauer,et al.  Ions of planetary origin in the Martian magnetosphere (Phobos 2/Taus experiment) , 1991 .

[382]  D. Montgomery Remarks on the MHD problem of generic magnetospheres and magnetotails , 1987 .

[383]  V. Troitskaya,et al.  The connection of Pc2-4 pulsations with the interplanetary magnetic field. , 1971 .

[384]  A. Hasegawa Drift Mirror Instability in the Magnetosphere , 1969 .

[385]  F. Plaschke,et al.  The Magnetosheath , 2022, Magnetospheres in the Solar System.