If at First You Don't Succeed

One quality that makes biological systems appear intelligent is their robustness to difficult circumstances. Robustness is crucial to intelligent behavior and important to AI research. We distinguish between ante-failure and post-failure robustness for causal tasks. Ante-failure robust systems resist failure, whereas post-failure systems incorporate the ability to recover from failure once it happens. We point out the power of post-failure robustness in AI problems, closely examining one example in visual motion tracking. Finally, we raise theoretical issues and argue for greater effort towards building post-failure robust systems.

[1]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[2]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[3]  Gregory D. Hager,et al.  Incremental focus of attention for robust visual tracking , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  W. R. Buckland,et al.  A Dictionary of Statistical Terms: 3rd Edition , 1978 .

[5]  Gregory D. Hager,et al.  Tracker fusion for robustness in visual feature tracking , 1995, Other Conferences.

[6]  J. Ager,et al.  A Dictionary of Statistical Terms. By M. G. Kendall and W. R. Buckland. [Third Edition. Pp. 166. Published for the International Statistical Institute by Oliver and Boyd, Edinburgh. £4·50] , 1972 .

[7]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[8]  Markus Vincze Optimal window size for visual tracking for uniform CCDs , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[9]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Gregory D. Hager,et al.  X Vision: A Portable Substrate for Real-Time Vision Applications , 1998, Comput. Vis. Image Underst..

[11]  W. Rey Introduction to Robust and Quasi-Robust Statistical Methods , 1983 .

[12]  Akio Kosaka,et al.  Vision-based motion tracking of frigid objects using prediction of uncertainties , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[13]  Daniel E. Koditschek,et al.  Further progress in robot juggling: the spatial two-juggle , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[14]  Gooitzen S. van der Wal,et al.  An architecture for multiresolution, focal, image analysis , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[15]  Richard Szeliski,et al.  Tracking with Kalman snakes , 1993 .

[16]  Michael J. Swain,et al.  Gesture recognition using the Perseus architecture , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Simon Parsons,et al.  Do the right thing - studies in limited rationality by Stuart Russell and Eric Wefald, MIT Press, Cambridge, MA, £24.75, ISBN 0-262-18144-4 , 1994, The Knowledge Engineering Review.

[18]  W. R. Buckland,et al.  A dictionary of statistical terms , 1958 .

[19]  F. Hsu,et al.  A Grandmaster Chess Machine , 1990 .

[20]  K. Toyama Handling Tradeoos between Precision and Robustness with Incremental Focus of Attention for Visual Tracking , 1996 .

[21]  Sam Steel,et al.  Integrating Planning, Execution and Monitoring , 1988, AAAI.

[22]  Leslie Pack Kaelbling,et al.  Learning Functions in k-DNF from Reinforcement , 1990, ML.

[23]  Demetri Terzopoulos,et al.  Animat vision: Active vision in artificial animals , 1995, Proceedings of IEEE International Conference on Computer Vision.

[24]  Stuart J. Russell,et al.  Do the right thing - studies in limited rationality , 1991 .

[25]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[26]  Robert S. Swarz,et al.  The theory and practice of reliable system design , 1982 .

[27]  G. Box NON-NORMALITY AND TESTS ON VARIANCES , 1953 .

[28]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[29]  N. Ono,et al.  Attitude control of a triple inverted pendulum , 1984 .

[30]  Andrew Blake,et al.  Affine-invariant contour tracking with automatic control of spatiotemporal scale , 1993, 1993 (4th) International Conference on Computer Vision.

[31]  Theodore F. Elbert,et al.  Estimation and control of systems , 1984 .

[32]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[33]  Markus Vincze Optimal window size for visual tracking , 1996, Optics & Photonics.

[34]  Peter J. Burt,et al.  Attention mechanisms for vision in a dynamic world , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.