Transgenic microalgae as green cell-factories.

There is increasing interest in the use of microalgae for biotechnological applications and as plant model systems. Although biotechnological processes based on transgenic microalgae are still in their infancy, researchers and companies are considering the potential of microalgae as green cell-factories to produce value-added metabolites and heterologous proteins for pharmaceutical applications. New molecular biology tools are needed to standardize genetic modifications of microalgae. Here, we outline methods and strategies for efficient nuclear transformation of microalgae, and discuss the main difficulties associated with stable expression of transgenes. Most progress in the field has been made with Chlamydomonas reinhardtii, but other species have now been successfully transformed, and many others will be transformed in the near future.

[1]  E. Jarvis,et al.  GENETIC TRANSFORMATION OF THE DIATOMS CYCLOTELLA CRYPTICA AND NAVICULA SAPROPHILA , 1995 .

[2]  P. Hegemann,et al.  A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. , 2001, Gene.

[3]  M. Schroda,et al.  The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. , 2000, The Plant journal : for cell and molecular biology.

[4]  Eric E. Jarvis,et al.  Manipulation of microalgal lipid production using genetic engineering , 1996 .

[5]  Nicolas Carels,et al.  Genome Properties of the Diatom Phaeodactylum tricornutum 212 , 2002, Plant Physiology.

[6]  K. Apt,et al.  COMMERCIAL DEVELOPMENTS IN MICROALGAL BIOTECHNOLOGY , 1999 .

[7]  W. Müller,et al.  Nuclear transformation of Volvox carteri. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Rochaix,et al.  The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas , 1998, Advances in Photosynthesis and Respiration.

[9]  H. Cerutti,et al.  Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. , 2000, Science.

[10]  Jeff Shrager,et al.  Chlamydomonas reinhardtii Genome Project. A Guide to the Generation and Use of the cDNA Information1 , 2003, Plant Physiology.

[11]  K B Taylor,et al.  Expression of a foreign gene in Chlamydomonas reinhardtii. , 1993, Gene.

[12]  A. Falciatore,et al.  Transformation of Nonselectable Reporter Genes in Marine Diatoms , 1999, Marine Biotechnology.

[13]  P. Hegemann,et al.  A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. , 1999, The Plant journal : for cell and molecular biology.

[14]  A. Dubus,et al.  Isolation and characterization of two new negative regulatory mutants for nitrate assimilation inChlamydomonas reinhardtii obtained by insertional mutagenesis , 1996, Molecular and General Genetics MGG.

[15]  D. Weeks,et al.  Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. , 2002, The Plant journal : for cell and molecular biology.

[16]  E. H. Harris,et al.  CHLAMYDOMONAS AS A MODEL ORGANISM. , 2003, Annual review of plant physiology and plant molecular biology.

[17]  A. Grossman,et al.  Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes , 2000 .

[18]  M. Schroda,et al.  Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. , 2002, The Plant journal : for cell and molecular biology.

[19]  P. Lefebvre,et al.  Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A. Grossman,et al.  Stable nuclear transformation of the diatomPhaeodactylum tricornutum , 1996, Molecular and General Genetics MGG.

[21]  Richard T. Sayre,et al.  Growth and Heavy Metal Binding Properties of Transgenic Chlamydomonas Expressing a Foreign Metallothionein Gene , 1999 .

[22]  Harald Fischer,et al.  TARGETING AND COVALENT MODIFICATION OF CELL WALL AND MEMBRANE PROTEINS HETEROLOGOUSLY EXPRESSED IN THE DIATOM CYLINDROTHECA FUSIFORMIS (BACILLARIOPHYCEAE) , 1999 .

[23]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. , 1989, The EMBO journal.

[24]  A. Richmond Handbook of microalgal culture: biotechnology and applied phycology. , 2004 .

[25]  H. Cerutti,et al.  A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. , 1997, Genetics.

[26]  S. Purton,et al.  GENETIC ENGINEERING OF EUKARYGTIC ALGAE: PROGRESS AND PROSPECTS , 1997 .

[27]  Peter Berthold,et al.  An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. , 2002, Protist.

[28]  M. Fuhrmann,et al.  Expanding the molecular toolkit for Chlamydomonas reinhardtii--from history to new frontiers. , 2002, Protist.

[29]  Qiang Hu,et al.  Handbook of microalgal culture , 2003 .

[30]  H. Cerutti,et al.  RNA interference: traveling in the cell and gaining functions? , 2003, Trends in genetics : TIG.

[31]  A. Grossman,et al.  High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. , 1998, Genetics.

[32]  L. Brown,et al.  DNA NUCLEOSIDE COMPOSITION AND METHYLATION IN SEVERAL SPECIES OF MICROALGAE 1 , 1992 .

[33]  V. Lumbreras,et al.  Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron , 1998 .

[34]  K. Lechtreck,et al.  Analysis of Chlamydomonas SF-assemblin by GFP tagging and expression of antisense constructs. , 2002, Journal of cell science.

[35]  T M Klein,et al.  Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. , 1988, Science.

[36]  Emilio Fernández,et al.  Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas. , 2002, The Plant journal : for cell and molecular biology.

[37]  M. Hirono,et al.  Recovery of flagellar dynein function in a Chlamydomonas actin/dynein-deficient mutant upon introduction of muscle actin by electroporation. , 2001, Cell motility and the cytoskeleton.

[38]  R. Burlingame,et al.  Stable Transformation of Chlorella: Rescue of Nitrate Reductase-Deficient Mutants with the Nitrate Reductase Gene , 1997, Current Microbiology.

[39]  Michal Shapira,et al.  Stable Chloroplast Transformation of the Unicellular Red AlgaPorphyridium Species1 , 2002, Plant Physiology.

[40]  J. Rochaix,et al.  The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii , 2001, Molecular Genetics and Genomics.

[41]  H. Cerutti,et al.  Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  K. Kindle Nuclear Transformation: Technology and Applications , 1998 .

[43]  A. Grossman,et al.  Trophic Conversion of an Obligate Photoautotrophic Organism Through Metabolic Engineering , 2001, Science.

[44]  J. V. Van Etten,et al.  Giant viruses infecting algae. , 1999, Annual review of microbiology.

[45]  R. Loppes,et al.  Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii , 1997, Current Genetics.

[46]  P. Hegemann,et al.  The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. , 2001, Journal of cell science.

[47]  Richard T. Sayre,et al.  Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae , 2002, The Plant Cell Online.

[48]  R. Meints,et al.  Recombinant viruses as transformation vectors of marine macroalgae , 1994, Journal of Applied Phycology.

[49]  V. Danilenko,et al.  Stable nuclear transformation of Chlamydomonas reinhardtii with a Streptomyces rimosus gene as the selective marker. , 1996, Gene.

[50]  F. Wollman,et al.  A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. , 1999, The Plant cell.

[51]  P. Lefebvre,et al.  Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii , 1995, Molecular and cellular biology.

[52]  Huiyun Chang,et al.  Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast , 2003, Biotechnology Letters.

[53]  David J. Miller,et al.  Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs , 1998 .

[54]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[55]  V. Lumbreras,et al.  Recent advances in chlamydomonas transgenics. , 1998, Protist.

[56]  A. Grossman,et al.  In vivo characterization of diatom multipartite plastid targeting signals , 2002, Journal of Cell Science.

[57]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii : cloning of the cDNA and its characterization as a selectable shuttle marker , 1999, Molecular and General Genetics MGG.

[58]  Dunahay Tg,et al.  Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. , 1993 .

[59]  D. R. Stevens,et al.  The bacterial phleomycin resistance geneble as a dominant selectable marker inChlamydomonas , 1996, Molecular and General Genetics MGG.

[60]  K. Kindle,et al.  Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2- strain , 1992, Molecular and cellular biology.

[61]  M. Wu,et al.  Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. , 1995, Biochemistry and molecular biology international.

[62]  Lewis M. Brown,et al.  Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea , 1991, Current Genetics.

[63]  H. Kojima,et al.  Photosynthetic microorganisms in environmental biotechnology , 2001 .